Volume 7 ▶ Number 1 ▷ Number 2 ▷ Number 3 ▷ Number 4
Some explicit formulae for the composite numbers
Original research paper. Pages 29–31
Mladen Vassilev-Missana
Full paper (PDF, 256 Kb) | Abstract
A note on the values of Zeta
Original research paper. Pages 32–35
Taekyun Kim and Seog-Hoon Rim
Full paper (PDF, 432 Kb) | Abstract
On Heron triangles, III
Original research paper. Pages 36–47
József Sándor
Full paper (PDF, 1376 Kb)
Expansion of integer powers from Fibonacci’s  odd number triangle
Original research paper. Pages 48–59
J. V. Leyendekkers and A. G. Shannon
Full paper (PDF, 1495 Kb) | Abstract
An elementary extension of Hermite’s equality
Original research paper. Page 60
Krassimir T. Atanassov
Full paper (PDF, 96 Kb) | Abstract
 and each natural number
 and each natural number  
      ![Rendered by QuickLaTeX.com \[[x] + [x + \frac{1}{n}] + [x + \frac{2}{n}] + \cdots + [x + \frac{n-1}{n}] = [nx].\]](https://nntdm.net/wp-content/ql-cache/quicklatex.com-f749c6c262eb96a23fa57d52c3c4588e_l3.png)
We shall extend it, proving that for each positive real number  and each natural numbers
 and each natural numbers  and
 and 
      ![Rendered by QuickLaTeX.com \[[x] + [x + \frac{1}{n}] + [x + \frac{2}{n}] + \cdots + [x + \frac{kn - 1}{n}] = k[nx] + \frac{(k-1)k}{n}.\]](https://nntdm.net/wp-content/ql-cache/quicklatex.com-aa59e6d3be46568003d4ad62515bd885_l3.png)
On 28-th Smarandache’s problem
Original research paper. Pages 61–64
Mladen V. Vassilev-Missana  and Krassimir T. Atanassov
Full paper (PDF, 469 Kb)
 
								
