Taekyun Kim and Seog-Hoon Rim

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 7, 2001, Number 2, Pages 32—35

**Download full paper: PDF, 432 Kb**

## Details

### Authors and affiliations

Taekyun Kim

*Institute of Science Education, Gongju National University
Chungnam Gongju, S. Korea*

Seog-Hoon Rim

*Department of Mathematics, Education Kyungpook University
Taegu 702-701. S. Korea*

### Abstract

By *q*-calculation, we construct a *q*-analogue of Riemann ζ-function, Hurwitz’s zeta function and prove some formulas for the values of these functions. By using these formulae, we can evaluate the values of ζ(5) − *A*ζ(5, ¼) where *A* is some rational number.

### Keywords

- Bernoulli number
- Zeta function

### AMS Classification

- 11M41
- 11B39

### References

- T. Kim. On a q-analogue of the
*p*-adic log gamma functions and related integrals J. Number Theory Vol. 76, 1999, 320-329. - T. Kim. An invariant
*p*-adic integral associated with Daehee numbers (to appear) in Integral. Trans. Special Function, 2001-2002. - T. Kim. An explicit formula on the generalized Bernoulli number with order
*n*. Indian J. of Pure and Applied Mathematics, Vol. 31, 2000, 1455-1461. - J. Satho,
*q*-Analogue of Riemann’s zeta-function and*q*-Euler numbers, J. Number Theory, Vol. 31, 1989, 346-362.

## Related papers

## Cite this paper

APAKim, T., & Rim, S.-H. (2001). A note on the values of Zeta. Notes on Number Theory and Discrete Mathematics, 7(2), 32-35.

ChicagoKim, T, and Seog-Hoon Rim. “A Note on the Values of Zeta.” Notes on Number Theory and Discrete Mathematics 7, no. 2 (2001): 32-35.

MLAKim, T, and Seog-Hoon Rim. “A Note on the Values of Zeta.” Notes on Number Theory and Discrete Mathematics 7.2 (2001): 32-35. Print.