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1. Let ABC' be a triangle with lengths of sides B(C' = a, AC' = b, AB = ¢ positive
integers. Then AB(C is called a Heron triangle (or simply., H-triangle) if its area A =
Area(ABC')is an integer number. The theory of H-triangles has a long history and certain
results are many times rediscovered. On the other hand there appear always some new
questions in this theory, or even there are famous unsolved problems. It is enough (see
e.g. [2]) to mention the difficult unsolved problem on the existence of a H-friangle having
all medians integers. The simplest H-triangle is the Pythagorean triangle (or P-triangle,
in what follows). Indeed. by supposing AB as hypothenuse, the general solution of the
equation

a® + b = ¢ (1)
(1.e. the so-called Pythagorean numbers) are given by

a=XMm*—n?), b=2\mn,c=Xm*+nr") (if bis even) (2)

where A is arbitrary positive integer, while m > n are coprime ol diflerent parities (i.e.

(m,n) =1 and m and n cannot be both odd or even). Clearly A = i)) = Mmn(m? —n?),

mteger.

Let p be the semiperimeter of the triangle. From (2) p = A(m? + mn); and denoting

by r the inradius of a such triangle, it is well known that

r=p-—c (3)



implying that r is always integer.
On the other hand, the radius R of the circumseribed circle in this case is given by
the simple formula

B= (4)

S e

which, in view of (2) is integer only if A is even, A = 2A (A > 0). The heights of a
P-triangle are given by

ha=b; Ba=16; B =— (5)

therefore all heights are integers only il ¢|ab, which, by (2) can be written as (m? +

n?)[2Amn(m? — n?). Since (m.n) = 1, of different parity, it is immediate that (m? +

n?, 2mn(m?* —n?)) = 1, giving (m* + n?)|X; i.e. A = K(m?+n?) (K > 0).

By summing, in a P-triangle the following elements: A, h,, hy, h.,r, R are integers at

the same time if and only if @, b, ¢ are given by
a=2d(m" —n"), b=4dmn(m®+n*), c=2d(m*+n?)? (6)

where we have denoted K = 2d (as by (4). A is even and m? + n? is odd).

In fact this contains the particular case of the P-triangles with @ = 30n. b = 40n,
¢ = 50n in a problem [7] by F. Smarandache, and in fact gives all such triangles.

2. An interesting example of a ll-triangle is that which has as sides consecutive

integers. Let us denote by C'"H such a H-triangle (i.e. "consecutive Heron”). The CH-

triangles appear also in the second part [6] of this series, where it is proved that r is

always integer. Since in a H-triangle p is always integer (see e.g. [3], [4]), if 2 — L, 2,2+ 1
. . . 3z . )
are the sides of a C'H-triangle, by p = 5 We have that = is even, @ = 2y. Therefore

the sides are 2y — 1,2y.2y + 1, when p =3y, p—a=y+1l.p—-b=y,p—c=y—1

giving A = /3y(y +1)(y — 1) = yy/3(y? — 1), by Heron’s formula of area. This gives
— = y/3(y? — 1) = rational. Since 3(y? — 1) is integer, it must be a perfect square,
Y
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3(y? — 1) =12, where

A= yt. (

-1

Since the prime 3 divides 2, clearly 3|t, let = 3u. This implies
P¥—t=1 (8)

which is a "Pell-cquation”. Here /3 is an irrational number. and the theory of such
equations (see e.g. [5]) is well-known. Since (y;,u1) = (2,1) is a basic solution (i.e. with

y1 the smallest ), all other solutions of this equations are provided by
Yn + Uy V3 = (2 -+ \/§) § (n>1). (9)
By writting
Yni1 + Ung1 V3 = (2 + ﬁ) s = (y.,, + -u.n\/g) (2 v \/E) = 29 + 3un + V3(y, + 2un).

we get the recurrence relations

Y41 = 2”!! + 3”'&
(n=1,2,...) (10)

Unt) = Yn T 2'{;”

which give all solution of (8); i.e. all CH-triangles (all such triangles have as sides 2y, —
L, 2y,. 2y, + 1). By y, = 2,7,26,97,... we get the Cl-triangles (3,4, 5); (13,14, 15);
(51,52,53); (193,194, 195);....

Now, we study certain particular elements of a CH-triangle. As we have remarked, r
is always integer, since

A

y = ==

p

At
—_— =1

y 3

(in other words, in (10) u, represents the inradius of the nth CH-triangle). If one denotes

by hs, the height corresponding to the (single) even side of this triangle, clearly

20 A,
h'?y = 9, = == = 3;"
=Y Y
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Therefore we have the interesting fact that hy, is integer. and even more, r is the third

part of this height. On the other hand. in a C'H-triangle, which is not a P-triangle (i.e.

excluding the triangle (3.4.5)). all other heights cannot be integers. (11)
2y —1
Indeed, % = A = yt gives (2y—1)z = 2yt (here x = h;,_, for simplicity). Since
2 i
(u.y) =1 and t = 3u we have (t.y)=1.50 7 = = = l is integer only if (2y — 1){t = 3u.
2y —

Now. by y? —3u’ =1 weget 4> — 1 = 12u? +3,ie. 2y — )2y + 1) = 3(4u* 4+ 1) =

4(3u*) 1 3. Therefore (2y—1)|3u implies (2y —1)|3u?, so we must have (2y— 1)|3. implying

2 1)z 2yt

y =2 (y > 1). For hy,4; we have similarly !L) = A=yl d0 7= ¥ . where
2 2y +1

(2y+ 1)t =3u & (2y+1)[3 & y =1 (as above). Therefore z = h,,4; cannot be

integer in all CH-triangles. (Remember that = = h;,_, is integer only in the P-triangle
(3.4.5)).
For It the things are immediate:

abe 2y(4y® — 1) B 4y* — 1 ~odd

R =
4A 4yt 2t evern

# integer. (12)

Let now r, denote the radius of the exseribed circle corresponding to the side of

length a. It is well-known that
ry = —.
p—a
yl ; b, yt
By 7y, = = (= 3r. in fact), we get that r,, is integer. Now ry, | = L
)

t . ;
y—l. Here (y+ 1.y) = 1. so ra,—, is integer only when (y+ 1)|# = 3u. Since y* —3u* = 1
y —

Tay+1 =

implies (y—1)(y+1) = 3u? = u(3u), by 3u = (y+ 1)k one has 3(y—1) = Juk = (y+1)k*

3y —1) 6 . g
andy—1 =uk. By h? = — =3 - we get that (y+1)|6, 1.e. y € {1.2.5}. We
v ) _—ey) ] T (y+1)I6, ie. y € {L.2,5}

can have only y = 2. when k£ = 1.
Therefore ry,_; is integer only in the P-triangle (3.1.5). (13)
2-3

In this case (and only this) ryyyy = T 6 is integer. too.

N

F

Remarks 1. As we have shown, in all CH-triangle, which is not a P-triangle. we can

exactly one height, which is integer. Such triangles are all acute-angled. (Since (2y—1)*+
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(2y)* > (2y+ 1)*). In [4] it is stated as an open question if in all acute-angled H-triangles
there exists at least an integer (-valued) height. This is not true, as can be seen from the
example a = 35, b = 34, ¢ = 15. (Here 342 + 15% = 1156 + 225 = 1381 > 35% = 1225, so
ABC is acute-angled). Now p=42, p—a=T,p—b=8,p—c=27T. A=252=2%-3%.7
and 35 =7:512A, 34 =2-17 ¢t 2A, 15 = 3 -5 { 2A. We note that h, = % is integer
only when a divides 2A. Let n be an integer such that 5- 17 { n. Then 35n, 34n, 15n are
the sides of a H-triangle, which is acute-angled, and no height is integer. The H-triangle
of sides 39,35, 10 is obtuse-angled, and no height is integer.

3. Let now ABC' be an isosceles triangle with AB = AC' = b, BC' = a. Assuming
that the heights AA" = x and BB’ = y are integers (clearly, the third height C'C" = BB’),

: 2
. p a2 a ; 5 . . .
by 5% = 2% + (;) we have P b’ — 2 = integer, implying a=even. Let a = 2u. Thus

b = ¥ +ul. (14)

I - : : ra
We note that if z is integer, then @ = 2u, so ABC is a H-triangle, since A = 57— B

The general solutions of (14) (see (2)) can be written as one of the followings:
(1) b= Mm?* +n?), 2 = AM(m? —n?), u = 2 mn;
(ii) b = X(m? + n?), 2 = 2 mn, u = M(m? —n?).

We shall consider only the case (i), the case (ii) can be studied in a completely anal-

0gous way.

Now a = 4dmn, b = A(m? + n?); so A = 2X2mn(m? —n?). Thus y = 5 is integer

. . . \ 2A |,
only when A(m? + n?)|[4X*mn(m? — n?). Thus y = — s integer only when A(m? +
n?)| AN mn(m* — n?). Since (m? + n®,4mn(m? — n?)) = 1 (see 1.. where the case of

P-triangles has been considered), this is possible only when (m? + n?)|), ie.
A = s(m?* 4+ n?). (15)

Therefore, in an isosceles H-triangle, having all heights integers. we must have (in

case (i1) a = 4smn(m?* +n?); b = s(m* + n*)? (where a is the base of the triangle) or (in
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case (i1))

a=2sm(m*—n'). b=sm(m®+n*> (16)

We note here that case (ii) can be studied similarly to the case (i) and we omit the
details.
In fact. il an isosceles triangle ABC" with integer sides a.b (base a) is H-triangle, then
{a

a 5 Y
p= b+3 = integer.soa =2u =even.Sop=b+uand p—b=u,p—a =b—§=b—u.

implying A = \/p(p —a)(p—b)2 = uv/b* — u*. This is integer only when b* — u? = ¢,

when A = ug. Now b* — ? is in fact 2* (where z is the height corresponding to the
base a), so ¢ = x. In other words, if an isosceles triangles ABC' is H-triangle, then its
height + must be integer, and we recapture relation (14). Therefore, in an isosceles

H-triangle a height is always integer (but the other ones only in case (16)). In such a
A

triangle, r = — = 2

P b+ u

1) b= A(m? +n®), u=2\mn, g = Am?* = n?);

. where b* = u? + ¢%. By (2) we can write the following equations:

i) b = AMm? 4+ n?), u = A(m* —n?), ¢ = 2\mn.

In case i) b+ u = A(m + n)*jug = 2X*mn(m?* — n?) only ifl (m + n)*|2Amn(m? — n?),
i.e. (m+n)|2 mn(m —n); and since (m +n,2mn(m—mn)) = 1. This is possible only when
(m + n)|A, i.e.

A=s(m+n)
case (ii) we get m|A, so A = sm

Therefore in an isosceles iriangle r is integer only when

i) b=s(m+n)(m?®+n?)., a =2n =4mns(m + n); or

ii) b= sm(m? +n?). a = sm(m* — n?).

abe ab®  2nb® B

ForR=—=—= = — have that R is int ly when 2¢|b%, where
or A= 1A P % we have tha is integer only when 2¢|b°, where

b = n? + g% In case i) we get 2X(m? — n?)|A*(m? + n?)%, which is possible only when

2(m? — n?)|A or in case ii) 4 Amn|A?(m?* + n?)? i.e. 4mn|A. By summing, R is integer only

il in i) A = 2s(m? — n?), while in ii}. A = 4smn. Then the corresponding sides a,b can be
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written explicitely.
I'rom the above considerations we can determine all isosceles H-triangles, in which all
heights and r, R are integers. These are one of the following two cases:

1) a=4kmn(m*—n?*), b=2k(m?—n?)(m?+ n?)% (15
8)
2) a=4kmn(m*—nt), b= 2kmn(m®+ n?)

where k& > 1 is arbitrary and (m,n) = 1, m > n are of different parity.
A g

= in case i) b —u = A(m — n)?|lug =
p—a b—u

In the same manner, by r, =

2

2X*mn(m? —n?) only if (m —n)|A i.e. A = s(m — n), while in case ii) b — u = 2An?|ug =

22%mn(m? —n?) iff n

A, i.e. A = sn. We can say that r, is infeger only if A = s(m —n) in
1) and A = sn in ii). We omit the further details.

4. As we have seen in Remarks 1 there are infinitely many H-triangles having none of
its heights integers (though, they are of course, rationals). Clearly. il at least a height of
an integral triangle (i.e. whose sides are all integers) is integer. or rational its area is

rational. We now prove that in this case the triangle is Heron. More precisely if a height

. ; . ; i 5 : ra :
of an integral triangle is rational, then this is a H-triangle. Indeed. by A = = rational.
we have that A is rational.

On the other hand, by Heron's formula we easily can deduce
16A% = 2(a®b? + a®c* + 6*c*) — (a* + b + ). (19)

Therefore (4A)? is integer. Since A = rational, we must have 4A = integer. If we can
prove that 4[4A then clearly A will be integer. For this it is sulficient to show (4A)? = 8k
(since, then 4A = 2/ so (4A)? = 4% implies [ = even). It is an aritmetic fact that
20a’b? + a?c? + b2e?) — (a' + b + ¢') is always divisible by 8 (which uses that for z odd
2% = 1(mod4), while for z even, 2% = 0(mod4)).

Let now ABC be a H-triangle with BC' = a = odd. We prove that the height

AA" = h, is integer only if a|(b* — ¢°). (20)
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Indeed, let A be integer, with a, b, ¢ integers. Then &, is integer iff a|2A. But this is
equivalent to a?|4A? or 4a*|16A2. Now, by (19)

4a*|[2(a*® + a®* + b*?) — (a* + b* + )] & @?|(26%P — bt — &t) = —(B* - P)?

(since the paranthesis in bracket is divisible by 8 and (@?,4) = 1). Or, a?|(b®> — )% is

equivalent to a|(b* — ¢?).
Clearly, (19) implies a?|(b? — ¢*)? for all a, therefore if

at (¥ -¢) (21)

h. cannot be integer. But (19) is not equivalent with (20) for all a (especially, for a =
even). In fact (19) is the exact condition on the integrality of A, in a H-triangle.
For general H-triangle, the conditions on the integrality of heights on r, R are not so

simple as shown in the preceeding examples of P, CH'or isosceles H-triangles.
In fact, from (19) we can remark that, since for @ = even we have 4a*|a* and 4a?|a®.(b%+

¢?) (by a+ b+ c = even in a H-triangle), we can state that in a H-triangle &, is integer iff:

a|(b®* = c?), fora wodd

2a|(b* — ¢?), for a = even
Sometimes we can give simple negative results of type (21). One of these is the follow-

ing:

Suppose that in an integral triangle of sides a,b, c we have
2(a+b+c)1tabe. (22)

Then r, R cannot be both integers.

Indeed, suppose a,b,c,r, R integers. Since r = %, clearly A is rational, so by the

b _
above argument, A is integer. So p is integer, too, a—+—2j-—cIA & a+ b+ c|2A. Now

R = a_bq‘ so 4A|abc. Therefore 2(a + b + c)|4A|abc if all the above are satisfied. But this

4A
is impossible, by assumption.

Certain direct results follow from the elementary connections existing between the

elements of a triangle.

. he . :
and sin B = ~ W get R = E, implying the following

For example, from R = ,b
2h,

2sin B

assertion:
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Il in an integral triangle of sides a, b, ¢ we have h, = integer, then R is integer only if
2h,|be. (23)

This easily implies the following negative result:

[f in an integral triangle of sides a,b. ¢ all heights h,. /s, k. are integers. but one of
a,b,cis not even; then R cannot be integer.

Indeed, by (23) 2h,|be, 2hy|ac, 2k, |ab so be, ae, ab are all even numbers. Since a+b+c =
2p is even, clearly all of a. b, ¢ must be even.

5. The characlerization of the above general problems (related to an arbitrary H-
triangle) can be done il one can give general formulae for the most general case. Such
formulae for a H-triangle have been suggested by R.D. Carmichael [1], and variants were
many fimes rediscovered. We wish to note on advance that usually such general formulae
are quite diflicult to handle and apply in particular cases because the many parameters
involved. The theorem by Carmichael can be stated as follows:

An integral triangle of sides a. b, ¢ is a H-triangle il and only if a, b, ¢ can be represented
in the following [orms

(m —n)(k* +mn) m(k? 4+ n?) n(k? + m?)
a4 = - . b= —m—— = ———

d p , €= a (24)

where d,m,n. k are positive integers; m > n; and d is an arbitrary common divisor of

(m —n)(k* + mn), m(k* + n?), n(k* +m?).

For a complete prool we quote [3].

m(k? + mn)

Now, from (24) we can calculate p = =t and
_ kmn(m —n)(k* + mn)
B d? '

In fact, the proof of (24) involves that p and A are integers for all k,m,n,d as given

above. By simple transformations, we get

2A  2kmn
hy =— = s

=
a d

é _ 2kn(m —n J(k% + mn)
h d(k? + n?) '
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2kmn(m — n)(k* 4+ mn)

h-rr = ; ; 5
: d(k? + m?)
L é _ kn(m — n.). R abe _ (k% 4+ m?)(k* + 'n.z]- (25)
p d 4A 4kd

These relations enables us to deduce various conditions on the integer values of the

above elements.
Particularly, we mention the following theorem:
All integral triangles of sides a,b. ¢ which are H-triangles, and where r is integer are

given by formulae (24), where d is any common divisor of the following expressions:

(m —n)(k* +mn); m(E*+n%); nk®4+m?);  kn(m—n). (26)

6. As we have considered before, among the CH-triangles in which all of r.r,,rs. 1.
are integers are in fact the P-triangles.

In what follows we will determine all H-triangles having r,r,, ry, r. integers.

Thereflore, let

A p—a)p—b)p— A —
-,—:.—:\/(p W29 . - L _ /Gr-bp-o.
p p—d

A ,
rn=-——7=Vrp—ap-0, ro=Vplp—a)p-b
be integers.

Putp—a=z,p—b=y,p—c=z,when3p—-2p=x+y+z2=p.

Then \/yz(.lf +y+z), \/;1'::(.-1' +y+z), \/;ry(.-r. +y+z), \/.x:yz/(_;r +y+ z) are all
integers, and since x,y, z are integer, the expressions on radicals must be perfect squares

of integers. Let

zz(z+y+2)=p°, yzlz+y+z)=q 7':'1,52. (2

LGN
~1
S’

Then by multiplication #?y*z%(x + y + 2)° = *p*¢?, so

qu :

' 2
r+ytz= =,
|:~L"'yz(3' y+ 3):|
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where tpg = vayz(z +y + z) = vieyz.

S ryz : P ; ’ . ;
This gives T = u? so zyz = uv? and tpg = u®®. Now zyv? = 3, z20? = p°.
v

2 . :

DA 2 2
N e 1. Rt T = 2 -k i G5 i < arliGEE
Yyzus = g° give ry = ; whete t = vpy, 22= , where p = vng, Yz = , where

v v v

g = vns (ny,ng,na integers). By v’ ninang = u®v” we get ningng = u?v?, By zy = nf,

yz = n3, 2yz = uwi, v+ y+z = v’ we get z = i X? y = d,Y?* (with
(X,Y)=1), ny = | XY; 2 = dyU? 2z = d;V?, ny = UV, (U, V) = 1; y = dsW?,
z = d3Q?, where (W.Q) = 1, nz = &zWQ. From zyz = G X?*Y?d,V? = u?o? it follows
that dy is a perfect square. So z is a square, implying that d, is a square, implying y =
perfect square. Thus n; = square, giving z = perfect square. All in all, =,y,z are all

perfect squares. Let 2 = o?, y = 8%, 2 = 4. Then

o + By = % (28)

b — . 4 ¢ — b 3 4+ b—c ;

From p—a = ——I_—;——a:c‘rz.p—b=y= a_—{%_ :,:'33.})—(‘::: 2—0 = 7
we can easily deduce

ai= B 4w b=a"474°, &= o® + 3. (29)

Now, the primitive solutions of (28) (i.e. those with (a,3,v) = 1) are given by (see
e.g. [1])

, 2 2 2 2
a=rmk—ns, F=ms+nk, y=m"+n" —k"—s",

v=m?+n’+k*+s° (30)
where m., k,n,s (mk > ns, m* + n? > k* + s?) are integers. By supposing (a.3,7) = d,
clearly @ = day, b = djB,, € = dv, and d*(o? + 37 + 1) = v? implies d*|v?, so d|v. Let
v = dvy, giving af + 37 +~; = vi. Thus the general solutions of (28) can be obtained
from (30), by multiplying each term of (30) by a common factor d.

These give all H-triangles with the required conditions.
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Remarks 2. Many generalized or extensions of Heron triangles or arithmetic problems
in geometry were inclunded in paper [6]. The part TV of this series (in preparation) will

contain other generalized arithmetic problems in plane or space (e.g. "Heron trapeziums™ ).
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Note added in proof. After completing this paper, we learned that Problem CMJ
354 (College Math. J. 18(1987), 248) by Alvin Tirman asks for the determination of
Pythagorean triangles with the property that the triangle formed by the altitude and
median corresponding to the hypothenuse is also Pythagorean. It is immediate that the

solution of this problem follows from paragraph 1. ol our paper.
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