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Abstract 
Cubes and squares are expanded in various ways stimulated by Fibonacci's odd number 
triangle which is in tum extended to even powers. The class structure of the cubes within the 
modular ring Z4 is developed. This provides constraints for the various functions which help in 
solving polynomial and diophantine equations, some simple examples of which are given. 

1. introduction 
One of the most remarkable results of that remarkable medieval mathematician, 

Leonardo Fibonacci ofPisa. was his triangle of odd numbers which is displayed in Table I 
(Hollingdale, 1989: 103). 

I' I 

2' 3 5
 

3'
 7 9 II
 

43
 13 15 17 19
 

5'
 21 23 25 27 29
 

63
 31 33 35 37 39 41
 

73
 43 45 47 49 51 53 55
 

83
 57 59 61 63 65 67 69 71
 

9'
 73 75 77 79 81 83 85 87 89 

103 91 93 95 97 99 101 103 105 107 109 

II' III 113 115 117 119 121 123 125 127 129 131 
Table 1: Fibonacci's Odd Number Triangle 

Ifwe represent the entries in Table 1by Uij> iJ"::: 1, then 



Ui,j = i2 - i + 2)- 1, (1.1 ) 
f 

i3 
= LUi" (1.2) 

j-l 

Ui,j - Ui-l/-l = 2i, (1.3) 

Ui,j - Ui-IJ = 2i - 2, (1.4) 

UI.I = i2 - i + I, ( 1.5) 

Uij = ;2 + ; - I, (1.6) 

where {Uf.l) is the sequence nf central polygonal numbers (Hogben, 1950: 22), and {u,j} 
contains the sequence of primes generated by (1.5) (Lehmer, 1941: 46). 'rhe results are also 
related to aspects of the studies by Vtz (1977), Wieckowski (1980) and Ando (1982). 

By adding the rows of Table I, we observe that we get the known result 

ND'~ (N)'L;j , (I.7) 
j_l j_l 

the successive terms within the right hand bracket being the triangular numbers Y2}(j + I) 
(Abramowitz and Stegun, 1964: 828). For recent research on (1.7) see Mason (2001). 

It is the purpose of this paper to consider the various expansions of sums and cubes 
suggested by the Fibonacci triangle and to extend the latter for even powers. 

2. Algebraic Cbaracterisation 
With N E Z_, the results in Table I can also be summarised by 

<-'. 

N' ~ L;(2f+ I) (2.1 ) 

""0 
with 10 ~ 'I,N(N - I) and 1m ~ 'I,N(N + I) - I.N may be further characterised by using 

the modular ring Z, (Leyendekkers ef ai, 1997). Integers in this 4-class ring can be 
represented by (4ri + i) where I represents the class and rj the row in rwhen the classes are 
set out as the columns in a rectangular array. Table 2 shows the class and parity structure of 
integers NEZ. 

Class ofN Class of N' 10 parity 10 class I .. parity I.. class Parity of rf(N) 

T, T, 2,even 2, even odd 

0, 0,even even even 

J, J, J, T, evenodd odd 

T, J,odd odd odd 

0, 0, 2, T,even odd odd 

even 0, odd J, even 

2, 0, even 2, even 

'--__-'---=:-;-;-::-:;1 odd I J' even I 0, I odd 

odd T, 

Table 2: Class and parity cbaracteristics from (2.1) 

49 



For example, if N:= 7. the class is 3"4 and the row is 1. and hence odd. We expect /0 to be 
odd and in Class T, and 1m to be odd and in Class 3",. From Equation (2.1), 
10 ~ 21 ~ (4x5+ I) and so in T" whilsllm ~ 27 ~ (4x6+3)andsoin3",. 

As can be seen from Table 1, the even cubes, N3, will be the sum of an even number (N) 
of odd numbers which are in 14 or 3"4, the classes alternating with each other; that is, 
3"4, T4.3"4. T4,3"4•... Thus the sum can only be in (J4. Class 24, in fact. contains no powers at 
all. 

3. Difference of Squares
 
Another way of expressing the cubes is by a difference of squares:
 

N' ~ (Y,N)'[(N + I)' - (N - I)']. (3.1 ) 

For even N we also have 

N' ~ (Y,N)'[(y,(N + 4))2 - (y,(N _ 4))']. (3.2) 

For convenience we use 

N' ~x'-y' (3.3) 

with the (x,y) pairs equal to [YtiV(N + 1), '/tiV(N - I)] for all integers, and 
[Y<N(N + 4), Y.N(N - 4)] for even integers as well. 

Comparison with Equation (2.1) shows that the general (x,y) pair equals [(1m + J), 10]. 

Table 3 lists some (x,y) pairs and the class structure of the integers within Z4. As can be 
seen, integers in 14 have an (x.y) pair structure of (T4.(J4) or (3"4,24) which alternate with 
each other. For integers in 3"4 the (x,y) class structure is (24,3"4) and ((J4. T4) which alternate 
with each other. For even integers, those in 24 have an (x.y) class structure of 
(T" 3",), (3",.3", land (3"" T,), (3"4::>') which alternate; all x,y in this case are odd. For integers 
in 0" the (x,y) sequence is (2,,2,), (0,,0,) and (0,,0,), (0" 0,) and all (x,y) pairs are even. 

Note that N = x - y in the general case and N = ~(x - y) for even N as well. 
An interesting feature of Table 3 is that (2x - I) or (21m+ I) ofEquation (2.I)(that is, 

the last odd integer ofthe cubic sum) is commonly a prime (16 out of the 25 listed integers). 

4. Extraction of Twos 
Ifwe expand Equation (2.1), then 

N-2 

N' ~ N+ (N-I)2/o + 21m+2 ~I. (4.1 ) 
...., 

Substituting for to, tm from Section J, we get 

N' ~ 3N+q-2 (4.2) 

in which 

N-' 
q~2~1~(N-l)(N-2) 

...., 
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and 

Table 3: Class structure Wlthm Z.. 

N (x,Y) (x',y') Class Class Class Class Class Class 

(x-y) = N (x' ­ y') ~ 2N ofN of of of of of 

I (x +y)' = N', 'iN (x' +y') ~ N', 21N in Z. (x,y) (x',y') (x',y') I(x",y") x'-y'~N' 

I I (1,0) T (T,O) I (T,O) I T 

2 (3, I ) ~ (3, T) (T,T) I 0 
I 3 (6,3) 3 (~,3) (O,T) 3 

4 (10,6) (8,0) 0 : (2,2) (0,0) (0,0) I (0,0) 0 

5 (15,10) T (3,2) (T,O) T 

6 (21,15) (15,3) ~ (T,3) (3,3) (T,T) (T,T) 0 

7 (28,21) 3 (0, T) (0, T) 3 , , 

8 (36,28) (24,8) 0 (0,0) (0,0) (0,0) (0,0) 0 

9 (45,36) T (T,O) (T,O) T 

10 (55,45) (35,15) ~ (3, T) (3,3) (T, T) (T, T) 0 

I1 (66,55) 3 (~,3) (O,T) 3 

12 (78,66) (48,24) 0 (~,~) (0,0) (0,0) (0,0) 0 

13 (91,78) T (3,~) (T,O) T 

14 (105,91) (63,35) ~ (T,3) (3,3) (T,T) (T, T) 0 

15 (120,105) 3 (0, T) (O,T) 3 

16 (136,120) (80,48) 0 (0,0) (0,0) (0,0) (0,0) 0 

17 (153,136) T (T,O) (T,O) T 

18 (171,153) (99,63) ~ (3,T) (3,3) (T,T) (T,T) 0 

19 (190,171) 3 (~,3) (O,T) 3 

20 (210,190) (120,80) 0 (!,!) (0,0) (0,0) (0,0) 0 

21 (231,210) T (3,~) (T,O) T 

22 (253,23 I) (143,99) ~ (T,3) (3,3) (T,T) (T, T) 0 

23 (276,253) 3 ,(0, T) (O,T) 3 

24 (300,276) (168,120) 0 (0.0) (0,0) (0,0) (0.0) 0 

25 (325,300) I T (T,O) (T,O) 1 T 
.. 

N= lI,(3+Q), N> I, (4.3) 

N = lI,(3 - Q), N = I, (4.4) 
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with 

Q ~ (I +4q)". 

From Equation (4.3) with N > I 

N' ~ Y,(5 + 2q + 3Q) (4.5) 

and 

N' ~ Y,(5 + 2q + 3Q)(3 + Q) (4.6) 

or 

N' ~ Y,[18(1 +q)+(14+2q)QJ (4.7) 

or 

N' ~ tQ(Q2 + 9Q + 27) + 27. (4.8) 

For N = 1, use --Q. Combining Equation (3.3) with (x,y) ~ ((I. + I),10) and Equation 
(4.1) gives 

N ~ (N _ 1)2 - (q - I) (4.9) 

Thus we have N3 as a sum of consecutive odd numbers. a difference of squares or a 
function of q. whilst any integer or integer squared may also be expressed as a function ofq 

It is of interest that ifQ is a prime, then 31q. One third of the first hundred integers have 
3 1 q. and 43% have Q as a prime. Half of the latter integers are odd with 75% of these 
being prime (exceptions being 25,35,55,65,91). 

Both q and Qcan be further characterized by using the right end digits (REDs), indicated 
by an asterisk in Table 4. The correct q- and Q- can be ascertained by checking equations 
for compatibility. Thencej\q) andj\Q) can be used to simplifY the equation. 

q' Q' j\q) J\Q) 

0 9 q ~ 25w2+ 45w + 20 Q~9+IOw 

I q ~ 25w' + 5w + 0 Q=I+JOw 

2 7 q ~ 25w' + 35w+ 12 Q~7+JOw 

3 q ~ 25w' + 15w + 2 Q~3+JOw 

6 5 q ~ 25w2 + 25w + 6 Q~5+JOw 

Table 4: Right end digits for q,Q 

Note that the right-end digits for (q : Q) are only (0 : 1,9), (2 : 3,7) and (6 : 5). 

s. Expansion of Squares 
The sums of odd numbers which make up squares are also sums of odd integers: 
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2' ~ 1 + 3, 

3' ~ 1 + 3 + 5, 
4' ~ I + 3 + 5 + 7, 

and so on as in Table 5 in which the row sums equals the outer diagonal swn. 

l' I 

22 1 3 

3' 1 3 5 

4' 1 3 5 7 

5' I 3 5 7 9 

6'1357911 

Table 5: Table of squares 

Thus 

N-l 

N' ~ :E(2t + 1) 
p.() 

N-l 

~N+2:Et. (5.1) 
p.() 

This can be compared with the extraction of twos for cubes. For example, Equation (4.2) 
gives 

N-' 
N' ~ (3N - 2) + 2:E t, (5.2) 

p.() 

53 or, on squaring Equation (4.3): 

N' ~ :,',(5 + 2q + 3(1 + 4q)") (5.3) 

with q ~ 22:.':;,' t. For all N with N' ~ x 2 _ y', 

N' ~x+y~ xN}y. (5.4) 

As well, for even N with N3 = X'2 _ /2, 

N' ~ 2(x' +y') ~ (5.5) 

with 

(x,y) ~ ('AN(N+ I),'M/(N-I))
 

and
 

53
 



(x',/): (Y.N(N+4),Y.N(N-4)); 

see Section I. From Equation (4.9), 

N' ~ N' - 4N' + (8 - 2q)N' + 4(q - 2)N + (q - 2)'. (5.6) 

6. Examples
 
We now give some examples of usage ofthe foregoing.
 
(1) The q functions may be used to solve a cubic, for instance. Let 

x 3 -12.<+9: O. (6.1) 

Substituting in Equations (4.4), (4.7) and (4.8), we get 

4 ~(81(q-I)')_1 (6.2)
q (5 -q)' 

which gives q ~ 2; and sinceq ~ (x - I)(x - 2) from Equation (4.2), then x : 3 as the 
only integer solution. Alternatively. we can use 

~ (7(9q -2))" (6.3)q 30 q
 

which again yields q ~ 2.
 

(2) Consider the elliptic function 

y' : x 3 + Ax' + x. (6.4) 

Obviously there will only be integer solutions when A := 2 and then y = Cx + 1)xYi . 

Using x ~ \>(3 + Q) and y ~ \>(3 + Q') frnm Equation (4.3), we get, with A : 2, 

Q' ~ -3 + '/,(Q + 5)(6 + 2Q)". (6.5) 

Thus, with Q : 5,Q' : 17 and this givesy ~ 10 and x ~ 4. 
In general, 

2(3 + Q')' ~ (3 + Q)(Q' + (6 + 2A)Q + (13 + 6A)) (6.6) 

with (13 +6A) ~ ab and (6+2A) ~ a+b, 

b : (A +3) + (A' - 4)". (6.7) 

WhenA =0 2,b = 5 and a = 5, otherwise there are no integer solutions for b asA2 - 4 
can never be a square. 

(3) Consider the Pythagorean triple 

(6.8) 

Substituting in Equation (5.1) we obtain 
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~I 

c'-b' = (c-b)+2L:t, (6.9) 
,." 

andwith==c-b 

"'-1 
2 b2c - :::: =+ 2 L I; (6.10) 

,." 

with == I (for triples (5,4,3), (25,24, 7), (221,220,21) for example) 

c' - b' = I + 2b', (6.11 ) 

whilst, with =~ 2 (fortriples (17, 15,8), (10405, 10403,204) for example) 

"I 

c' - b' ~ 2 + 2 L: t ~ 4 + 4b, (6.12) 
,." 

and so on. 

(4) From Equation (5.1) 

N-l 

N' ~ N' + 2NL:t. (6.13) 
...0 

Ifwe have 

(6.14) 

then 

~I "I ] 
c3 _b 3 = c2 _b 2 +2 C ~/-b ~t , (6.15)

[ 

and 

a' +~ ~ a' +~ +{a~I+d~t ] (6.16) 

This symmetry indicates that integer solutions will occur, unlike the asymmetric triple 
form. With c ~ 6, a ~ 5, b ~ 4 and d = 3, the right hand side of Equation (6.15) equals 91 
and the right hand side of Equation (6.16) equals 91. 

In general, if we take 

n' + (n + I)' + (n +2)' = (n + 3)', 

as for the n :::: 3 case, and using n3 = Xl - y2. and noting that for those cases (such as 
n ~ 3 above), we have x for (n + 3) ~ x for (n + 2). Equating these shows thaI n ~ 3 is the 
only solution in such cases. 
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(5) Equation (5.6) gives N' as a function ofNand q. Thus a polynomial of the fourth 
degree may be reduced to a cubic or lower. For instance, consider 

x' - 8x3 + 24x' - 32x + 15 ~ 0 (6.17) 

which is known to have two complex roots and two real ones. Substituting for x4 from 
Equation (5.6) yields 

-4x3 + (17 + 2q)x' - (24 +4q)x+ 15 - (q _2)' ~ O. (6.18) 

With q = O,x = I or 2, and substitution of q shows x = I. With q = 2,x = 3, which 
satisfies the equation. Thus, the real roots are x = 1,3. 

For cases where q > 0, that is x *" 1,2, we can substitute Equations (4.2) and (4.7) into 
Equation (6.18) to obtain 

x~ (l4+2q)Q-q(q-I)+41. (6.19)27 + 2q , 

when q = 2, Q = 3 so that x = 3 as before. 

(6) Given that 

y~ 8x3 -36x'+56x-39, 

find the values ofx which will make y a perfect cube. 
Substitution in Equation (4.3), (4.5) and (4.7) for x,x' ,x3 respectively gives: 

y ~ Q3 + Q_ 9. (6.20) 

IfQ = 9,q =20 and since q = 2~~/, thenx ~ 6. Thus x ~ 6makesy = Q3 = 93 

(7) Show that 5'" - I is always divisible by 24. 
This is easily solved from Z4. Since 315" and (5")2 E T4 since it is a square, then 

(5")' - I = 4r, 

where, as before, '1 is the row. Since (51/,3) = 1, all other rl for squares have 6irI so 
that 4rl always has 24 as a factor. 

7. Conclusion 
By way of conclusion we note that Fibonacci's odd number triangle for cubes can be 

extended to an odd number triangle for fourth powers as in Table 6. 

I' 

2' 

3' 

4' 

5' 

+0 

+1' 

+2' 

+3' 

+4' 

I 

3 5 7 

9 II 13 15 17 

19 21 23 25 27 29 31 

33 35 37 39 41 43 45 47 49 

Table 6: Triangle for fourth powers 
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We observe that 

N'-l
 

N' ~ (N-I)' + L: (2j+ I), n> I,
 
}-(N-J)l 

and 

N N N2-J 

L:ki = L:(k-IY + L:(2j-I), 
j"\ j"\ j-\ 

by comparison with the results in Section 1. An alternative triangle for odd-integer cubes 
can also be provided from 

(7.1 )
 

withA ~ OforN~ I andforN~ 3 

"(N-3) ) 

( 
A~2 1+ ~(2j+l) , 

B ~ (2N-I)+A. 

I' I 

33 2 3 4 5 6 7 
53 8 9 10 II 12 13 14 15 16 17 

73 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table 7: Triangle for odd integer cubes 
Thus in general 

(7.2)
 

Equation (7.2) can be readily established by induction on n. for n ~ 3, since it can be 
readily seen that Equation (7.1) is the case of (7.2) when n ~ 3. 

The basis of many efficient primality tests and nearly all composite tests is Fermat's 
Little Theorem (Riesel, 1994), namely, that ifp is prime and (a,p) = 1, then 

a~l ~ I (mOOp). 

This can be used as a test of compositeness: namely, N is composite if (a,N) = I, and 

aN- 1 ~ I (mooN). 

Since N - 1 is even, we can use 
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aN - 1 = 

a\i(N-I)~ 1 

1+ :E (2}+ I) 
j-I 

'" 1(modN). 

for an odd power, n, since 

tV'" = 

N"-I 

:E (2}+ I), 
j-'J 

so that 

JY 
N" 1 ' 

N" = ~ (2} + I) .
[ 

It is of interest in the context of this paper that many primality tests also involve 
generalisations of the Fibonacci numbers (Muller, 2000). 

In general, for triangles confined to the sum of odd integers, even powers, n follow: 

N~-l 

N" = :E (2}+ I) 
J-'J 

N~-I 

=111"'+2 :E} 
j-'J 

with the number of odd integers in each row equal to N'hn. When n > 2 the row sums 
will no longer equal the outer diagonal sums. With N > M and n even, if 

M~-l NIin_l 

N" + M" = 2 :E (2} + 1) + :E (2} + I) 
j=(J j-M'kJ 

=pn, 

then P E Z iff n = 2 according to Fermat's Last Theorem. That is, 

M'4It_l P""'-l 

:E (2}+ I)" :E (2j+ I) 
jwO j=N"'" 

unless 

M-l P-l 

:E(2j + I) = :E(2} + 1) 
j-<J j-N 

which could be related to the class constraints for powers of even and odd integers within 
Z4 (lvfhn, N'hn. p'hn). Even powers are confined to one class which reduces the probability of 
a match. Odd powers also have class constraints (Table 2). 
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