Krassimir T. Atanassov and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 3, Pages 218–223

DOI: 10.7546/nntdm.2020.26.3.218-223

**Full paper (PDF, 81 Kb)**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
*

Anthony G. Shannon

*Warrane College, The University of New South Wales
356 Anzac Parade, Kensington, NSW 2033, Australia
*

### Abstract

We construct three intercalated sequences and develop their essential properties which are generalizations of the three basic Fibonacci sequences. They are extensions of pulsated sequences described at previous Fibonacci conferences. We relate these sequences to the sequence {*y*_{n}}_{n ≥ 0} = {0, 1, 4, 15, 56, …}.

### Keywords

- Fibonacci-type sequences
- Recurrence relations
- Induction
- Horadam sequences

### 2010 Mathematics Subject Classification

- 11B37
- 11B39

### References

- Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24 (4), 362–365.
- Atanassov, K. (1989). Remark on variants of Fibonacci squares. Bulletin of Number Theory and Related Topics, XIII, 25–27.
- Atanassov, K. (1989). A remark on a Fibonacci plane. Bulletin of Number Theory and Related Topics, XIII, 69–71.
- Atanassov, K. (1989). On a generalization of the Fibonacci sequence in the case of three sequences. The Fibonacci Quarterly, 27 (1), 7–10.
- Atanassov, K. (1995). Remark on a new direction for a generalization of the Fibonacci sequence, The Fibonacci Quarterly, 33 (3), 249–250.
- Atanassov, K. (2006). A new direction of Fibonacci sequence modification.
*Notes on Number Theory and Discrete Mathematics*, 12 (1), 25–32. - Atanassov, K. (2014).
*n*-Pulsated Fibonacci sequence.*Notes on Number Theory and Discrete Mathematics*, 20 (1), 32–35. - Atanassov, K. (2017). On two new two-dimensional extensions of the Fibonacci sequence.
*Notes on Number Theory and Discrete Mathematics*, 23 (3), 115–122. - Atanassov, K. (2018). On two new combined 3-Fibonacci sequences.
*Notes on Number Theory and Discrete Mathematics*, 24 (2), 90–93. - Atanassov, K., Atanassova, L., & Sasselov, D. (1985). A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly, 23 (1), 21–28.
- Atanassov K., Atanassova, V., Shannon, A., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
- Atanassov, K., Deford, D. R., & Shannon, A. G. Atanassov, K. (2014). Pulsated Fibonacci recurrences. Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications (P. Anderson, C. Ballot, W. Webb, Eds.), Rochester, New York, July 20–27, 2014, 22–27.
- Atanassov, K., & Shannon A. G. (1999). Fibonacci planes and spaces. In Applications of Fibonacci Numbers (F. Howard, Ed.), Vol. 8, Dordrecht, Kluwer, 43–46.
- Atanassov, K., & Shannon A. G. (2002). New variant of a Fibonacci plane.
*Notes on Number Theory and Discrete Mathematics*, 8 (3), 112–115. - Atanassov, K., & Shannon A. G. (2005). Digit sum bases for Fibonacci and related numbers.
*Notes on Number Theory and Discrete Mathematics*, 11 (3), 25–32. - Atanassov, K., & Shannon A. G. (2008). A Fibonacci cylinder.
*Notes on Number Theory and Discrete Mathematics*, 14 (4), 4–9. - Atanassov, K., & Shannon A. G. (2010). A short remark on Fibonacci-type sequences, Mobius strips and the
*ψ*-function. International Journal of Mathematical Education in Science and Technology, 41 (8), 1125–1127. - Atanassov, K., & Shannon A. G. (2011). The digital root function for Fibonacci-type sequences. Advanced Studies in Contemporary Mathematics, 21 (3), 251–254.
- Atanassov, K., & Shannon A. G. (2016). Combined 3-Fibonacci sequences from a new type.
*Notes on Number Theory and Discrete Mathematics*, 22 (3), 5–8. - Atanassova, V., Shannon, A., & Atanassov, K. (2003). Sets of extensions of the Fibonacci sequence. Comptes Rendus de l’Academie bulgare des Sciences, 56 (9), 9–12.
- Everest, G., Van der Poorten, A., Shparlinski, I., & Ward, T. (2003). Recurrence Sequences (Mathematical Surveys and Monographs; Vol. 104). Providence: RI: American Mathematical Society, p. 163.
- Horadam, A. F. (1967). Special properties of the sequence {
*w*(_{n}*a,b;p,q*)}. The Fibonacci Quarterly, 5 (5), 424–434. - Janjić, M., & Petković, B. (2014). A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers. Journal of Integer Sequences, 17, Article ID 14.3.5.
- Shannon, A., & Atanassov, K. (2002). Introduction to the difference calculus through the Fibonacci numbers. International Journal of Mathematical Education in Science and Technology, 33 (3), 456–465.
- Sloane, N. J. A., & Plouffe, S. (1995). The Encyclopedia of Integer Sequences, San Diego, CA: Academic Press, A001353.

## Related papers

## Cite this paper

Atanassov, K. T., & Shannon, A. G. (2020). On intercalated Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 26 (3), 218-223, DOI: 10.7546/nntdm.2020.26.3.218-223.