Digit sum bases for Fibonacci and related numbers

Krassimir T. Atanassov and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 11, 2005, Number 3, Pages 25—32
Download full paper: PDF, 2872 Kb

Details

Authors and affiliations

Krassimir T. Atanassov
CLBME – Bulgarian Academy of Sciences
P.O.Box 12, Sofia-1113, Bulgaria

Anthony G. Shannon
KvB Institute of Technology, North Sydney, NSW 2060
& Warrane College, Kensington, NSW 1465, Australia

Abstract

In [1-4] a digital arithmetical function is defined and its properties are described. Here we shall discuss its application to Fibonacci types of sequences.

References

  1. Atanassov K., An arithmetical function and some of its applications. Bulletin of Number Theory and Related Topics, Vol. IX (1985), No. I, 18-27.
  2. Atanassov K., More on ψ-function (I). Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 27-30.
  3. Atanassov K., More on  ψ-function (II). Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 31-36.
  4. Atanassov K., A. Shannon, J. Clarke, A digit sum arithmetical function. Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 37-49.

Related papers

Cite this paper

APA

Atanassov, K. T., and Shannon, A. G. (2005). Digit sum bases for Fibonacci and related numbers. Notes on Number Theory and Discrete Mathematics, 11(3), 25-32.

Chicago

Atanassov, Krassimir T, and Anthony G Shannon. “Digit Sum Bases for Fibonacci and Related Numbers.” Notes on Number Theory and Discrete Mathematics 11, no. 3 (2005): 25-32.

MLA

Atanassov, Krassimir T, and Anthony G Shannon. “Digit Sum Bases for Fibonacci and Related Numbers.” Notes on Number Theory and Discrete Mathematics 11.3 (2005): 25-32. Print.

Comments are closed.