Krassimir T. Atanassov and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 11, 2005, Number 3, Pages 25—32

**Download full paper: PDF, 2872 Kb**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*CLBME – Bulgarian Academy of Sciences
P.O.Box 12, Sofia-1113, Bulgaria*

Anthony G. Shannon

*KvB Institute of Technology, North Sydney, NSW 2060
& Warrane College, Kensington, NSW 1465, Australia *

### Abstract

In [1-4] a digital arithmetical function is defined and its properties are described. Here we shall discuss its application to Fibonacci types of sequences.

### References

- Atanassov K., An arithmetical function and some of its applications.
*Bulletin of**Number Theory and Related Topics,*Vol. IX (1985), No. I, 18-27. - Atanassov K., More on
*ψ*-function (I).*Bulletin of Number Theory and Related Topics,*Vol. XI (1987), No. 1, 27-30. - Atanassov K., More on
*ψ*-function (II).*Bulletin of Number Theory and Related Topics,*Vol. XI (1987), No. 1, 31-36. - Atanassov K., A. Shannon, J. Clarke, A digit sum arithmetical function.
*Bulletin of**Number Theory and Related Topics,*Vol. XI (1987), No. 1, 37-49.

## Related papers

## Cite this paper

APAAtanassov, K. T., and Shannon, A. G. (2005). Digit sum bases for Fibonacci and related numbers. Notes on Number Theory and Discrete Mathematics, 11(3), 25-32.

ChicagoAtanassov, Krassimir T, and Anthony G Shannon. “Digit Sum Bases for Fibonacci and Related Numbers.” Notes on Number Theory and Discrete Mathematics 11, no. 3 (2005): 25-32.

MLAAtanassov, Krassimir T, and Anthony G Shannon. “Digit Sum Bases for Fibonacci and Related Numbers.” Notes on Number Theory and Discrete Mathematics 11.3 (2005): 25-32. Print.