Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 26, 2020, No. 3, 218-223

DOI: 10.7546/nntdm.2020.26.3.218-223

On intercalated Fibonacci sequences

Krassimir T. Atanassov! and Anthony G. Shannon?

! Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia--1113, Bulgaria

e-mail: krat@bas.bg

2 Warrane College, The University of New South Wales
356 Anzac Parade, Kensington, NSW 2033, Australia

e-mail: t . shannon@warrane.unsw.edu.au; tshannon38Q@gmail.com

Received: 8 March 2020 Accepted: 13 August 2020

Abstract: We construct three intercalated sequences and develop their essential properties which
are generalizations of the three basic Fibonacci sequences. They are extensions of pulsated
sequences described at previous Fibonacci conferences. We relate these sequences to the
sequence {y.}» 0= {0, 1,4, 15, 56, ...}.
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1 Introduction

In a series of joint papers, the authors introduced more than ten different Fibonacci-type
sequences (see, [1 — 20, 24]). In the present paper, we introduce a new Fibonacci type sequence
which is related to the pulsated Fibonacci sequence [7, 12, 19].

We begin with the construction of the following three sequences in Table 1.

These sequences are obtained from the following initial terms and recurrence relations

aw=a,o=b,=c
O+l =P+ Yt O, Pos1l = Cs1+ W Yol = Chsr1 + B

for each natural number n > 0. It is the purpose of this note to show how they are interrelated.
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n B 2 ¥
0 a
b c
1 a+b+c
a+b+2c a+2b+c
2 3a+4b +4c
4a + 6b + 5¢ 4a + 5b + 6¢
3 1la + 15b + 15¢
15a +20b + 21c¢ 15a +21b + 20c
4 4la + 56b + 56 ¢
56a +77b+76 ¢ 56a +76b + 77 ¢

Table 1. { &}, {5}, { %)

2 Preliminary results

Let us define

O

Jig

% = pna+rab+qnc

Xnd + Ynb + ync

Pna+ qnb + rnc

We see and can prove, for example, by induction, that for each natural number n > 0:

Xn = Yn—=Yn-1
Pn = Yn
gn = rn+ (=1
rn = qn+(—1)"’1
gntTn = Yne1—Yn.
Therefore,
@i = 5 Gre1 =+ 1)

1
Fn = E(yn+1—yn+(—1)”“)-

Hence, all coefficients can be represented by coefficients y, for each natural number n > 0, and
we see that the sequence {y.}. 0= {0, 1, 4, 15, 56, ...} has a common member that is obtained
from the equation

y—4y+1=0,
which has squares 2 +\/§ and 2 —\/3 . Hence,

1
n= —— (2+3)=(2-+3)"
y 2\/5((+\/_)( J3)m

and
yn+2=4yn+1 —Yn.
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Therefore, we can represent all other coefficients in terms of the coefficients in y, as follows
Xn =Yn—Yn-1

1 1

=——((2 3V — (2= 3V ——((2 3n—1_2_3n—1
ﬁ<<+f> -3y 2ﬁ<<+f> @-3)yh
@By B - =B (-3
V3

- @By By e B @By -3y
243
S5 @@= B T @By e By

and
3 1
Pn —\/—
qn = ( \/—
Tn = ( \/_

Finally, we can formulate and prove by induction the following result.

@+ BY-2-+3)m;
@+B3)y ' —2-B)y- 1>+%«2+f>" Le =B )+ )

@+B)y " —2-B)y- 1>+1<<2+f>" Le =3 )+ (1),

3 Main result

Theorem 1. For each natural number n > 1 the general terms (n-th members) of the three

sequences {&n }n >0, {fn }n >0 and {¥x }u >0 are respectively

<f<<2+f>“ Q- f>“>+—<<2+f>“+<2 V3
r @+ By-@-Bb+o;
23
B = %((m V3)y-@2-~3))a+ l(%/_ @+ 3y —@2-B3)

+%((2+f)"- +2-V3)H+(- 1>">b+—< @+ By'-2-+3)"

\/_

* %((2 + 3+ 2= By + D

1 1
= — — 2+ V3 —@2-3)!
=T f<<+f> Q-3

+%<<2+f>"1+<2 Sy + (1 + - <f<<2+f>“ Q-3

@+ 3y —2-B))a+ l<

" %((2 B 2= B 4 D
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Proof. When n = 1, 2, the validity of the assertion is seen from the definition of the sequences.
Let assume that the assertion is valid for some n > 2. Now, we shall check its validity forn + 1,
using the shorter form of the representations of &, £, and %:

i1 = P+ Yo+ O
=pna+qgnb+ric+pra+rnb+qgic+xna+y.b+ync
=2pnt+xn)a+(@n+rn+Y)b+(gn+1rn+yn)c
=2+ Yn=yn-D)a+Qns1=Yn+y) b+ Gnr1=yn+yn)c
=@yn—yn-1)a+ys+1b+ynric
[from X, s 1=Ya+1 = Vn=4Yn —=Yn-1 = Yn=3Yn— Yn-1]

= VYn+1A + Yns1 b + Yus1 6

Bost =Chv1+ W
=Xn+1Ad+Yn+1b+Yns1Cc+pna+rnb+qguc
=ns1+p)a+Ons1+r)b+Ons1+qn)c
=Pn+1-pant+p)a+ Ons1+1) b+ Ons1+qn)c

1 1
=Pn+la+()7n+l+§(yn+1—yn+(—1)n+1))b+(yn+l+ E(Yn+l—yn+(—1)n))c
1 n+1 1 n
=pn+1a+ 5(3yn+1—yn+(—1) )b+5(3yn+l—yn+(_1))c

1 1
=pn+1a+ 5(4yn+1—yn+1—yn+(—1)n+1)b+ E(4yn+1—yn+1—yn)c
[from yn+2=4 yu+1 — Yul
1 1
=pn+1a-+ E(yn+z—yn+1+ (—1)n+1)b+ E(ymz —yn+1+(—1)”)c

=pn+1a+qne1b+ras1c

The check for % +1 is identical to that for £, + 1.
This completes the proof. ]

4 Conclusion

We can see some of the foregoing with a simplistic numerical example, in whicha =1, b =2 and
¢ = 3, as set out in Table 2. The examples are trivial, but their interdependence can be clearly
seen as part of their ‘basic’ nature, and some of those in [25; A001075, A001835] have a rich
history. {x,} satisfies the same second order linear homogeneous recurrence relation as {y,} but
with different initial conditions as in Horadam sequences [22].

The {y.»} sequence is shown in [25] to have applications in other parts of number theory (such
as prime-free sequences), geometry, combinatorics, special functions, numerical analysis and
Hessenberg matrices. It is related to many other classes of sequences [21, 23].
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n B o T Yn Xn XntYn | hh=Ca | o= fh
0 2 1 3 0 1 1 2 1
1 9 6 8 1 1 2 2 -1
2 31 23 32 4 3 7 9 1
3 118 86 117 15 11 26 31 -1
4 438 321 439 56 41 97 118 1
Table 2. Numerical examples of sequences, n =0, 1, 2, 3,4
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