Krassimir T. Atanassov and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 14, 2008, Number 4, Pages 4—9

**Download full paper: PDF, 1457 Kb**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*Centre for Biomedical Engineering – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria*

A. G. Shannon

*Raffles College of Design and Commerce, North Sydney, NSW 2060, &
Warrane College, University of New South Wales, NSW 1464, Australia*

### Abstract

The simple function *f*(*n*) = ½*n*(*an* ± 1), *a* = 1, 3, 5 with *n* = 1, 2, …, 200, generated 615 primes of the modular ring Z_{6}. 194 of these were twin primes. Values of *n* which yielded primes for all *f*(*n*) were simply related to the number of primes in a given range.

### References

- Atanassov, K. On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365.
- Atanassov, K. On some Pascal’s like triangles. Part 4. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 4, 11-20.
- Atanassov, K., V. Atanassova, A. Shannon, J. Turner. New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey, 2002.
- Atanassov, K., Shannon, A., Fibonacci planes and spaces, in (F. Howard, Ed.) Applications of Fibonacci Numbers, Vol. 8, Dodrecht, Kluwer, 1999, 43-46.

## Related papers

## Cite this paper

APAAtanassov, K. T., & Shannon, A. G. (2008). A Fibonacci cylinder. Notes on Number Theory and Discrete Mathematics, 14(4), 4-9.

ChicagoAtanassov, Krassimir T, and Anthony G Shannon. “A Fibonacci Cylinder.” Notes on Number Theory and Discrete Mathematics 14, no. 4(2008): 4-9.

MLAAtanassov, Krassimir T, and Anthony G Shannon. “A Fibonacci Cylinder.” Notes on Number Theory and Discrete Mathematics 14.4 (2008): 4-9. Print.