A Fibonacci cylinder

Krassimir T. Atanassov and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 14, 2008, Number 4, Pages 4—9
Download full paper: PDF, 1457 Kb

Details

Authors and affiliations

Krassimir T. Atanassov
Centre for Biomedical Engineering – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria

A. G. Shannon
Raffles College of Design and Commerce, North Sydney, NSW 2060, &
Warrane College, University of New South Wales, NSW 1464, Australia

Abstract

The simple function f(n) = ½n(an ± 1), a = 1, 3, 5 with n = 1, 2, …, 200, generated 615 primes of the modular ring Z6. 194 of these were twin primes. Values of n which yielded primes for all f(n) were simply related to the number of primes in a given range.

References

  1. Atanassov, K. On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365.
  2. Atanassov, K. On some Pascal’s like triangles. Part 4. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 4, 11-20.
  3. Atanassov, K., V. Atanassova, A. Shannon, J. Turner. New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey, 2002.
  4. Atanassov, K., Shannon, A., Fibonacci planes and spaces, in (F. Howard, Ed.) Applications of Fibonacci Numbers, Vol. 8, Dodrecht, Kluwer, 1999, 43-46.

Related papers

Cite this paper

APA

Atanassov, K. T., & Shannon, A. G. (2008). A Fibonacci cylinder. Notes on Number Theory and Discrete Mathematics, 14(4), 4-9.

Chicago

Atanassov, Krassimir T, and Anthony G Shannon. “A Fibonacci Cylinder.” Notes on Number Theory and Discrete Mathematics 14, no. 4(2008): 4-9.

MLA

Atanassov, Krassimir T, and Anthony G Shannon. “A Fibonacci Cylinder.” Notes on Number Theory and Discrete Mathematics 14.4 (2008): 4-9. Print.

Comments are closed.