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Belogradchik is a small town in the most North-West Bulgaria. Around it there are inter-
esting natural formations - big stones with different strange forms. On 1 May 2007- Day of the
Work - and by this reason the mathematicians work, we.the authors visited Belogradchik and
the forms of the stones generated idea for a new extension of Fibonaccy sequence. For some of
the previous ones see our book [3].

Let us have the real numbers ag,aq,...,a, and bg, b, ...,b, . Let
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Let us have a cylinder brocken on levels, so, on the first level stay numbers ag, a,, ..., «,. as
it is shown:
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on the second - numbers by, by, ...,b, as it is shown:



The numbers in the next levels are obtained as function of the numbers from the two previous
level. Below we show the forms of the third, fourth and fifth levels:
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Let for natural number £ > 0 the elements from the k-th level be:
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Then for k> 0and 1 < j<n:
1 n
Pr42,0 = - ; Ok,i + Pk41,00
Pk+2,5 = Pit1,j + Pr0-

The first ten terms of the sequences {¢o}r>0 and {¢x ;}r>0 for some fixed j (1 < j < n)
are the following



n k.0 Pk.5

0 g b()

1 bo b;

2 by + ap + b;

3 bo + a+ /3 ap+ bo+ b,

4 a+ bo+ a+ 20 ag + 2bp + a + b;

5 2o + 2bo + @ + 38 ao + 3bo + 2a + B + b,
6 3ag + 4by + 20 + 48 2a9 + 4bo + 3 + 33 + b;
7 dag + Tby + 4 + 63 4ao+6bo+4a+6ﬂ+bj
8 6ap + 11bg + T + 1043 Tag + 10by + 6 + 103 + bj
9 | 10ay+ 17bg + 11ax + 178 | 11ag + 17bg + 10 + 163 + b.,

Let v be the integer function defined for every k& > 0 by:
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Obviously, for every m > 0,
P(m+3) = —(n).

Here we must note that the second schene of 2-Fibonacci sequences, defined in [1.2] is

Qg = a, ﬂo’—"bs a; = ¢, ﬂl =d
Qpy2 = Oy + Pn, n 20
ﬂn-&-‘l == ﬂn-{-l +a,, n 2 0

and its first ten elements are

n o, Bn

0 a b

1 c d

2 b+c a+d

3 b+c+d a+c+d

4 a+b+c+2d a+b+2.c+d

5 2.a4+b+2.¢c+3.d a+3b+3.c+2d

6 Ja+2b+4.c+4d 2.a+3b+4.c+4d
7 ta+4.b+T.c+6.d da+4.b+6.c+7.d
8| 6a+7.b+ 11.c+10.d 7T.a+6.b+ 10.c+ 11.d
9110a+11b+17c+17d|11l.a+ 100+ 17.c+ 17.d

Now, we see that the vertical section of the cylinder has the form:
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Therefore, the sequences {¢x0}i>0 and {¢x ;}k>o for some fixed number j (1 < j < n) are
in an approximately the same relations as the two sequences from 2-Fibonacci sequences. The
unique difference is that the members of sequence {¢x ;}r>0 contain a fifth component and the
coefficient of the fourth component is with 1 smaller that the coefficient of the fourth member
of the second sequence in the 2-Fibonacci sequentes.

Let {Fi}k>0 be the ordinary Fibonacci sequence and let F_, = 1.

Hence, it is valid the following

THEOREM: If k > 0,1 < j < n, then the sequences determined the Fibonacci cylinder have
the explicit formulae: '

1 .
ko = 5-((Fk-1 + ¥(k)).ao + (Feoy + ¥(k + 3)).a + (Fi + ¥(k + 4)).bo + (Fi + ¥(k + 1)).3)

= %-((_ao + a).Fi_y + (bo + B).Fr + ¢¥(k).ap + ¥(k + 3).a + ¥(k + 4).bo + Y(k + 1).3),

: .
bk,j = ;2-((Fk—l +9(k+3)).a0+ (Feo1 + ¢(k)).a+ (Fi+9(k+1)).bo+(Fi + ¥(k+4) - 1).0)+b;)
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(a0 + @).Fiy + (bo + B). Fic + $(k + 3).o + (k).cr + (k + 1).bo + (9(k +4) = 1).5+ b,).

After Fibonacci speces (see [4]) and Fibonacci pyramid (see [2]), the present construction is
the third three-dimensial form of a Fibonacci object.
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