A FIBONACCI CYLINDER Krassimir T. Atanassov^{1,2} and Anthony G. Shannon^{2,3} ¹ Centre for Biomedical Engineering – Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, BULGARIA e-mail: krat@bas.bq $^2~{\rm KvB}$ Institute of Technology, North Sydney, 2060, AUSTRALIA ³ Warrane College, University of New South Wales, Kensington, 1465, AUSTRALIA, emails: tonySHANNON@raffles.kvb.edu.au and tony@warrane.unsw.edu.au Belogradchik is a small town in the most North-West Bulgaria. Around it there are interesting natural formations - big stones with different strange forms. On 1 May 2007- Day of the Work - and by this reason the mathematicians work, we the authors visited Belogradchik and the forms of the stones generated idea for a new extension of Fibonaccy sequence. For some of the previous ones see our book [3]. Let us have the real numbers $a_0, a_1, ..., a_n$ and $b_0, b_1, ..., b_n$. Let $$\alpha = \frac{1}{n} \sum_{i=1}^{n} a_i,$$ $$\beta = \frac{1}{n} \sum_{i=1}^{n} b_i.$$ Let us have a cylinder brocken on levels, so, on the first level stay numbers $a_0, a_1, ..., a_n$, as it is shown: a_1 a_n a_2 a_0 on the second - numbers $b_0, b_1, ..., b_n$ as it is shown: b_1 b_n b_2 b_0 The numbers in the next levels are obtained as function of the numbers from the two previous level. Below we show the forms of the third, fourth and fifth levels: $a_0 + b_1$ $a_0 + b_n$ $a_0 + b_2$ $b_0 + \alpha$ $a_0 + b_0 + b_1$ $a_0 + b_0 + b_n$ $a_0 + b_0 + b_2$ $b_0 + \alpha + \beta$ $$a_0 + 2b_0 + b_1 + \alpha$$ $a_0 + 2b_0 + b_1 + \alpha$ $a_0 + 2b_0 + b_2 + \alpha$ $$a_0 + b_0 + \alpha + 2\beta$$ Let for natural number $k \ge 0$ the elements from the k-th level be: $$\phi_{k,1}$$ $\phi_{k,2}$ $\phi_{k,0}$ Then for $k \geq 0$ and $1 \leq j \leq n$: $$\phi_{k+2,0} = \frac{1}{n} \sum_{i=1}^{n} \phi_{k,i} + \phi_{k+1,0},$$ $$\phi_{k+2,j} = \phi_{k+1,j} + \phi_{k,0}.$$ The first ten terms of the sequences $\{\phi_{k,0}\}_{k\geq 0}$ and $\{\phi_{k,j}\}_{k\geq 0}$ for some fixed j $(1\leq j\leq n)$ are the following | n | $\phi_{k,0}$ | $\phi_{k,j}$ | |---|--------------------------------------|--| | 0 | a_0 | b_0 | | 1 | b_0 | b_j | | 2 | $b_0 + \alpha$ | $a_0 + b_j$ | | 3 | $b_0 + \alpha + \beta$ | $a_0+b_0+b_j$ | | 4 | $a_0 + b_0 + \alpha + 2\beta$ | $a_0 + 2b_0 + \alpha + b_j$ | | 5 | $2a_0+2b_0+\alpha+3\beta$ | $a_0+3b_0+2\alpha+\beta+b_j$ | | 6 | $3a_0+4b_0+2\alpha+4\beta$ | $2a_0+4b_0+3\alpha+3\beta+b_j$ | | 7 | $4a_0+7b_0+4\alpha+6\beta$ | $4a_0+6b_0+4\alpha+6\beta+b_j$ | | 8 | $6a_0 + 11b_0 + 7\alpha + 10\beta$ | $7a_0 + 10b_0 + 6\alpha + 10\beta + b_j$ | | 9 | $10a_0 + 17b_0 + 11\alpha + 17\beta$ | $11a_0 + 17b_0 + 10\alpha + 16\beta + b_j$ | Let ψ be the integer function defined for every $k \geq 0$ by: | r | $\psi(6.k+r)$ | |---|---------------| | 0 | 1 | | 1 | . 0 | | 2 | -1 | | 3 | -1 | | 4 | 0 | | 5 | 1 | Obviously, for every $m \geq 0$, $$\psi(m+3)=-\psi(n).$$ Here we must note that the second schene of 2-Fibonacci sequences, defined in [1.2] is $$\alpha_0 = a, \ \beta_0 = b, \ \alpha_1 = c, \ \beta_1 = d$$ $$\alpha_{n+2} = \alpha_{n+1} + \beta_n, \ n \ge 0$$ $$\beta_{n+2} = \beta_{n+1} + \alpha_n, \ n \ge 0$$ and its first ten elements are | n. | α_n | eta_n | |----|---------------------------|---------------------------| | 0 | а | b | | 1 | с | d | | 2 | b+c | a + d | | 3 | b+c+d | a+c+d | | 4 | a+b+c+2.d | a+b+2.c+d | | 5 | 2.a + b + 2.c + 3.d | a + 3.b + 3.c + 2.d | | 6 | 3.a + 2.b + 4.c + 4.d | 2.a + 3.b + 4.c + 4.d | | 7 | 4.a + 4.b + 7.c + 6.d | 4.a + 4.b + 6.c + 7.d | | 8 | 6.a + 7.b + 11.c + 10.d | 7.a + 6.b + 10.c + 11.d | | 9 | 10.a + 11.b + 17.c + 17.d | 11.a + 10.b + 17.c + 17.d | Now, we see that the vertical section of the cylinder has the form: Therefore, the sequences $\{\phi_{k,0}\}_{k\geq 0}$ and $\{\phi_{k,j}\}_{k\geq 0}$ for some fixed number j $(1\leq j\leq n)$ are in an approximately the same relations as the two sequences from 2-Fibonacci sequences. The unique difference is that the members of sequence $\{\phi_{k,j}\}_{k\geq 0}$ contain a fifth component and the coefficient of the fourth component is with 1 smaller that the coefficient of the fourth member of the second sequence in the 2-Fibonacci sequentes. Let $\{F_k\}_{k\geq 0}$ be the ordinary Fibonacci sequence and let $F_{-1}=1$. Hence, it is valid the following **THEOREM:** If $k \ge 0, 1 \le j \le n$, then the sequences determined the Fibonacci cylinder have the explicit formulae: $$\begin{split} \phi_{k,0} &= \frac{1}{2}.((F_{k-1} + \psi(k)).a_0 + (F_{k-1} + \psi(k+3)).\alpha + (F_k + \psi(k+4)).b_0 + (F_k + \psi(k+1)).\beta) \\ &= \frac{1}{2}.((a_0 + \alpha).F_{k-1} + (b_0 + \beta).F_k + \psi(k).a_0 + \psi(k+3).\alpha + \psi(k+4).b_0 + \psi(k+1).\beta), \\ \phi_{k,j} &= \frac{1}{2}.((F_{k-1} + \psi(k+3)).a_0 + (F_{k-1} + \psi(k)).\alpha + (F_k + \psi(k+1)).b_0 + (F_k + \psi(k+4) - 1).\beta) + b_j) \\ &= \frac{1}{2}.((a_0 + \alpha).F_{k-1} + (b_0 + \beta).F_k + \psi(k+3).a_0 + \psi(k).\alpha + \psi(k+1).b_0 + (\psi(k+4) - 1).\beta + b_j). \end{split}$$ After Fibonacci speces (see [4]) and Fibonacci pyramid (see [2]), the present construction is the third three-dimensial form of a Fibonacci object. ## References - [1] Atanassov K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365. - [2] Atanassov, K., On some Pascal's like triangles. Part 4. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 4, 11-20. - [3] Atanassov K., V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey, 2002. - [4] Atanassov K., Shannon A., Fibonacci planes and spaces, in (F. Howard, Ed.) Applications of Fibonacci Numbers, Vol. 8, Dordrecht, Kluwer, 1999, 43-46.