Krassimir T. Atanassov

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 3, Pages 115—122

**Download full paper: PDF, 133 Kb**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria
*

### Abstract

Two new two-dimensional extensions of the Fibonacci sequence are introduced. Explicit formulas for their *n*-th members are given.

### Keywords

- Fibonacci sequence

### AMS Classification

- 11B39

### References

- Atanassov, K., Atanassova, L., & Sasselov, D. (1985) A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly, 23 (1), 21–28.
- Atanassov, K. (1986) On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362–365.
- Atanassov, K., Atanassova, V., Shannon, A., & Turner, J. (2002) New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
- Lee, J.-Z., & Lee, J.-S. (1987) Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 25(2), 111–117.

## Related papers

- Atanassov, K. T., & Shannon, A. G. (2020). On intercalated Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 26 (3), 218-223

## Cite this paper

APAAtanassov, K. T. (2017). On two new two-dimensional extensions of the Fibonacci sequence Notes on Number Theory and Discrete Mathematics, 23(3), 115-122.

ChicagoAtanassov, Krassimir T. “On two new two-dimensional extensions of the Fibonacci sequence.” Notes on Number Theory and Discrete Mathematics 23, no. 3 (2017): 115-122.

MLAAtanassov, Krassimir T. “On two new two-dimensional extensions of the Fibonacci sequence.” Notes on Number Theory and Discrete Mathematics 23.3 (2017): 115-122. Print.