Marco Ripà
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 3, Pages 607–616
DOI: 10.7546/nntdm.2025.31.3.607-616
Full paper (PDF, 1390 Kb)
Details
Authors and affiliations
Marco Ripà
Independent Researcher
Rome, Italy
Abstract
In the decimal numeral system, we prove that the well-known Graham’s number, (i.e.,
(
times)), and any base
tetration whose hyperexponent is larger than
share the same
rightmost digits (where
indicates the integer super-logarithm). This is an exact result since the
rightmost digit of
differs from the
rightmost digit of
. Furthermore, we show that the
least significant digit of the difference between Graham’s number and any base
tetration whose integer hyperexponent exceeds
is
.
Keywords
- Graham’s number
- Tetration
- Congruence speed
- Power tower
- Stable digits
- Frozen digits
- Powers of 3
- Decimal system
2020 Mathematics Subject Classification
- 11A07
- 11F33
References
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to Algorithms. (4th ed.). The MIT Press, Cambridge, Massachusetts.
- Exoo, G. (2003). A Euclidean Ramsey problem. Discrete & Computational Geometry, 29(2), 223–227.
- Gardner, M. (1977). Mathematical games. Scientific American, 237(5), 18–28.
- Gobel, F., & Nederpelt, R. P. (1971). The number of numerical outcomes of iterated powers. The American Mathematical Monthly, 78(10), 1097–1103.
- Graham, R. L., & Rothschild, B. L. (1971). Ramsey’s Theorem for n-parameter sets. Transactions of the American Mathematical Society, 159, 257–292.
- Guy, R. K., & Selfridge, J. L. (1973). The nesting and roosting habits of the laddered parenthesis. The American Mathematical Monthly, 80(8), 868–876.
- Knuth, D. E. (1976). Mathematics and computer science: Coping with finiteness. Science, 194(4271), 1235–1242.
- McWhirter, N. (Compiler). (1979). Guinness Book of World Records, 1980. Sterling Publishing Company, New York.
- OEIS Foundation Inc. (2024). A133613. The Online Encyclopedia of Integer Sequences. Available online at: https://oeis.org/A133613.
- Ripà, M. (2011). La Strana Coda della Serie
. UNI Service, Trento, Italy.
- Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26(3), 245–260.
- Ripà, M. (2021). The congruence speed formula. Notes on Number Theory and Discrete Mathematics, 27(4), 43–61.
- Ripà, M. (2024). Congruence speed of the tetration bases ending with 0. Preprint. arXiv:2402.07929v1 [math.NT]. Available online at: https://arxiv.org/pdf/2402.07929.
- Ripà, M., & Onnis, L. (2022). Number of stable digits of any integer tetration. Notes on Number Theory and Discrete Mathematics, 28(3), 441–457.
- Surhone, L. M., Timpledon, M. T., & Marseken, S. F. (2010). Super-Logarithm: Mathematics, Tetration, Exponentiation, Nth Root, Logarithm, Abel Function, Logistic Function, Fixed Point, Iterated Logarithm. Betascript Publishing, Beau Bassin, Mauritius.
- Urroz, J. J., & Yebra, J. L. A. (2009). On the equation
. Journal of Integer Sequences, 12(8), Article 09.2.4, 1–8.
- Weisstein, E. W. (2024). Graham’s Number. MathWorld – A Wolfram Web Resource. Available online at: https://mathworld.wolfram.com/GrahamsNumber.html
Manuscript history
- Received: 15 October 2024
- Revised: 6 September 2025
- Accepted: 10 September 2025
- Online First: 12 September 2025
Copyright information
Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Ripà, M., & Onnis, L. (2022). Number of stable digits of any integer tetration. Notes on Number Theory and Discrete Mathematics, 28(3), 441–457.
- Ripà, M. (2021). The congruence speed formula. Notes on Number Theory and Discrete Mathematics, 27(4), 43–61.
- Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26(3), 245–260.
Cite this paper
Ripà, M. (2025). Graham’s number stable digits: An exact solution. Notes on Number Theory and Discrete Mathematics, 31(3), 607-616, DOI: 10.7546/nntdm.2025.31.3.607-616.