Marco Ripà

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 3, Pages 245—260

DOI: 10.7546/nntdm.2020.26.3.245-260

**Download full paper: PDF, 987 Kb**

## Details

### Authors and affiliations

Marco Ripà

*sPIqr Society, World Intelligence Network
Rome, Italy*

### Abstract

Integer tetration, the iterated exponentiation * ^{b}a* for

*a*∈ ℕ − {0, 1}, is characterized by fascinating periodicity properties involving its rightmost figures, in any numeral system. Taking into account a radix-10 number system, in the book “La strana coda della serie

*n*^

*n*^ … ^

*n*” (2011), the author analyzed how many new stable digits are generated by every unitary increment of the hyperexponent

*b*, and he indicated this value as

*V*(

*a*) or “congruence speed” of

*a*≢ 0 (mod 10). A few conjectures about

*V*(

*a*) arose. If

*b*is sufficiently large, the congruence speed does not depend on

*b*, taking on a (strictly positive) unique value. We derive the formula that describes

*V*(

*a*) for every

*a*ending in 5. Moreover, we claim that

*V*(

*a*) = 1 for any

*a*(mod 25) ∈ {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23} and

*V*(

*a*) ≥ 2 otherwise. Finally, we show the size of the fundamental period

*P*for any of the remaining values of the congruence speed: if

*V*(

*a*) ≥ 2, then

*P*(

*V*(

*a*)) = 10

^{V(a)+1}.

### Keywords

- Number theory
- Power tower
- Tetration
- Hyperoperation
- Charmichael function
- Euler’s totient function
- Primitive root
- Exponentiation
- Integer sequence
- Congruence speed
- Modular arithmetic
- Stable digit
- Rightmost digit
- Cycle
- Periodicity

### 2010 Mathematics Subject Classification

- 11A07
- 11F33

### References

- Andreescu, T., Andrica, D., & Feng Z. (2006). 104 Number Theory Problems: From the Training of the USA IMO Team. Birkhäuser, Boston.
- Daccache, G. (2015). Climbing the ladder of hyper operators: tetration, Mathemathics Stack Exchange, Available online at: https://math.blogoverflow.com/2015/01/05/climbing-the-ladder-of-hyper-operators-tetration/.
- Elaqqad (2015). Last Digits of a Tetration, Mathemathics Stack Exchange (Version: 2015-04-01), Available online at: https://math.stackexchange.com/q/1216149.
- Germain, J. (2009). On the Equation
*a*≡^{x}*x*(mod*b*). Integers: Learning, Memory, and Cognition, 9 (6), 629–638. - Jolly, N. (2008). Constructing the Primitive Roots of Prime Powers, arxiv.org, Available online at: https://arxiv.org/pdf/0809.2139.pdf.
- Ripà, M. (2011). La strana coda della serie
*n*^*n*^ … ^*n*. UNI Service, Trento. - Sloane, N. J. A. (2018). A317824. The Online Encyclopedia of Integer Sequences, Web. 10 Aug. 2018, Available online at: http://oeis.org/A317824.
- Sloane, N. J. A. (2018). A317903. The Online Encyclopedia of Integer Sequences. Web. 10 Aug. 2018, Available online at: http://oeis.org/A317903.
- Sloane, N. J. A. (2018). A317905. The Online Encyclopedia of Integer Sequences. Web. 10 Aug. 2018, Available online at: http://oeis.org/A317905.
- Urroz, J. J., & Yebra J. L. A. (2009) On the Equation
*a*≡^{x}*x*(mod*b*), Journal of Integer Sequences, 8 (8).^{n} - User26486, & Brandt, M. Do the last digits of exponential towers really converge to a fixed sequence? Mathematics Stack Exchange (Version: 22 Feb. 2015), Available online at https://math.stackexchange.com/questions/1159995/do-the-last-digits-of-exponential-towers-really-converge-to-a-fixed-sequence.
- Vladimir, & Doctor Jacques (2005). Modular Exponentiation, The Math Forum, Available online at: http://mathforum.org/library/drmath/view/51625.html.
- Yan, X.-Y., Wang, W.-X., Chen, G.-R., & Shi, D.-H. (2016). Multiplex congruence network of natural numbers, Scientific Reports, 6, Article No. 23714.

## Related papers

- Vassilev-Missana, M. (2010). Some results on infinite power towers.
*Notes on Number Theory and Discrete Mathematics*, 16(3), 18-24. - Ripà, M. (2021). The congruence speed formula. Notes on Number Theory and Discrete Mathematics, 27(4), 43-61.
- Ripà, M., & Onnis, L. (2022). Number of stable digits of any integer tetration.
*Notes on Number Theory and Discrete Mathematics*, 28(3), 441-457.

## Cite this paper

Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26 (3), 245-260, doi: 10.7546/nntdm.2020.26.3.245-260.