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Abstract: Integer tetration, the iterated exponentiation ��  for � ∈ ℕ − �0, 1
, is characterized 

by fascinating periodicity properties involving its rightmost figures, in any numeral system. 

Taking into account a radix-10 number system, in the book “La strana coda della 

serie n ^ n ^ ... ^ n” (2011), the author analyzed how many new stable digits are generated by 

every unitary increment of the hyperexponent �, and he indicated this value as 
(�) or 

“congruence speed” of � ≢ 0(mod 10). A few conjectures about 
(�) arose. If � is sufficiently 

large, the congruence speed does not depend on �, taking on a (strictly positive) unique value. 

We derive the formula that describes 
(�) for every � ending in 5. Moreover, we claim that 
(�) = 1 for any �(mod 25) ∈ �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23
 and 
(�) ≥ 2 otherwise. Finally, we show the size of the fundamental period � for any of the 

remaining values of the congruence speed: if 
(�) ≥ 2, then �(
(�)) = 10�( )!". 
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1 Introduction 

In the present paper, we study recurrence properties involving the rightmost digits of the tetration �� = � #…
(�-times) [6], observing that, when the hyperexponent � ∈ ℕ is sufficiently large and �(mod 25) ≢ �0, 1, 5, 7, 10, 15, 18, 20, 24
, the number of new stable digits generated by any 

unitary increment of � is unitary as well: it depends only on the congruence modulo 25 of the 

base � ∈ ℕ [9]. 

In Sections 4 and 5, we extend the aforementioned relation to the remaining values of �. 

These new results would contribute to improve big numbers rightmost digits calculations, 

opening new scenarios in cryptography/cryptanalysis, too [13]. 
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2 Congruence speed of %(&'( )*) 

It is well known that, for any arbitrarily large +, ��  originates a string of + stable figures [10], 

thus we can say that ��  is well-defined modulo 10,, for any � ≥ �-(+, �) [9, 11, 12]. 

It is possible to observe the same peculiarity considering many different numeral systems [4], 

but we only take into account the decimal one (radix-10). 

Let us now introduce the definition of “congruence speed” as it was originally presented by 

Ripà in his book about the righmost digits of ��  [6]. 

Definition 1. Let � ∈ ℕ − �1
 be an arbitrary base which is not a multiple of 10 and let � ∈ ℕ − �0, 1
 be such that ��." ≡ �(mod 100)� ∧ ��." ≢ �(mod 100!")� , where 2 ∈ ℕ. 

We define 
(�, �) to be the non-negative integer such that � ≡ �3mod 100!�( )4�!"� ∧ � ≢ �3mod 100!�( )!"4�!"� . 

For simplicity, from here on out, we refer to 
(�) as the congruence speed of the base  � ∈ ℕ ∶ � ≢ 0(mod 10) of the tetration �� . 

3 Conjectures about the congruence speed 

In this section we present the conjectures and a few remarks to point out their main implications, 

specifying that 6(+) indicates Euler’s totient function (which counts the number of positive 

integers up to a given + ∈ ℕ − �0
 that are relatively prime to +), while 7(+) repesents the 

Charmichael lambda function (the reduced totient function given by the smallest positive divisor 

of 6(+) that satisfies the conclusion of the well known Euler’s totient theorem). 

Before starting to discuss the main results, let us introduce a lemma that we will use later. 

Lemma 1. Referring to Definition 1, ∀� ≥ 2, 
(3, �) = 1. If � = 1, then 
(3, �) = 0. 

Proof. If � = 1, the lemma is trivially verified, � = 1 ⇒ 3 ≢ 3:(mod 10) ⇒ 3 ≢ 7(mod 10). 

In order to show that � ≥ 2 ⇒ 
(3) = 1, we need to prove that ∀� ≥ 2, 3� ≡ 3�!" (mod 10�.") ∧ 3� ≢ 3�!" (mod 10�); 

and we start with the first congruence relation. 

We prove by induction on � that 3� ≡ 3�!" (mod 2�!"), ∀� ≥ 2. � = 2 ⇒ 27 ≡ 3;<(mod 8) ⇒ 3 ≡ 3(mod 8). 

Let � ≥ 2 and assume 3� ≡ 3�!" (mod 2�!"). Since 3 and 10 are coprime, we can invoke 

Euler’s totient theorem. It is well known that, ∀� ∈ ℕ, 6(2�!;) = 2�!" (proof follows from 

Euclid’s lemma). Thus, 3= :> ? ≡ 3= :>@A ?=mod 6(2 ∙ 2�!;)?, and we can rewrite it as 3�!" ≡ 3�!; (mod 2�!;), which concludes the proof of the inductive step. 

Similarly, we can show that 5�." | 3�!" − 3� , ∀� ≥ 2. 

Base case: � = 2 ⇒ 27 ≡ 3;<(mod 5) ⇒ 2 ≡ 2(mod 5). 

Induction step: let � ≥ 2 and assume 3� ≡ 3�!" (mod 5�."). 
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As shown before, we have 3� ≡ 3�!" (mod 6(5�))  ⇒ 3�!" ≡ 3�!; (mod 5�) by Euler’s 

theorem. Since 3� ≡ 3�!" (mod 5�.") ⇒ 3�!" ≡ 3�!; (mod 4 ∙ 5�.") (see [6, p. 66]), it follows 

that 3� ≡ 3�!" (mod 5�.")  ⇒ 3�!" ≡ 3�!; (mod 5�). This confirms that the inductive step is 

also true. 

Therefore, we have proved that    3� ≡ 3(mod 10DEF(�!",   �."))�!" ⇒ 3� ≡ 3(mod 10�.")�!" . 

We complete the proof of Lemma 1 showing that 3� ≢ 3(mod 10�)�!" , ∀� ∈ ℕ − �0, 1
. 

In order to prove that ∄� such that 3� ≡ 3(mod 10�)�!" , it is sufficient to show that 3�!" ≢ 3� (mod 5�), ∀�. We prove that 5� ∤ 3�!" − 3� , ∀� ∈ ℕ − �0, 1
 by induction on � (as 

usual). 

Let � = 2. 3;< ≢ 27(mod 25) is true, since 12 ≢ 2(mod 25).  

We need to prove the induction step. 

Let � ≥ 2 and assume 3�!" ≢ 3� (mod 5�). This is true since 5�." is the largest power of 5 

that divides 3 3�!" − 3� 4. Otherwise, 5� would divide 3 3�!" − 3� 4, which implies that 

“3 3�!" − 3� 4 is a multiple of 6(5�!")”, but the statement is false since 3 is a primitive root 

modulo 5� for any � ≥ 1, and we deduce this from [5, Theorem 1]. Assuming I = 0,  

[5, Theorem 1] states that if 5 is an odd prime (and it is) and if 3 is a primitive root of 5(�J;), 
then 3 is also a primitive root of 5�!". 

Thus, we need to check that 3 is a primitive root of 5; = 25, and it is so (since 5; has a total 

of 8 primitive roots: 2, 3, 8, 12, 13, 17, 22, 23). 

Therefore, for � = 3, the conguence speed of ��  is constant (∀� ≥ 2). 

In particular, we have shown that 
(3) = 1 (for any � > 1) using the primitive root analysis, 

and this concludes the proof.                          � 

The primitive root argument is a key point at the bottom of many results that we will introduce 

in the next sections and represents a central topic discussed in [6] as well. 

Property 1. ∀� ∈ ℕ − �1, 2
 ∶ � ≢ 0(mod 10), ∃�- ∈ ℕ − �0
 ∶ �- < � such that, ∀� ≥ �-, 
(�, �) = 
(�) ∈ ℕ − �0
 (see A317905 of the OEIS − ruling out the first term of the sequence 

[9]). 

Remark 1. Referring to the aforementioned property and considering all the bases � ∈ ℕ ∶ � ≢ 0(mod 10), we point out that this is a peculiarity of tetration (as for the 

exponentiation if � ∶ � ≡ 0(mod 10)): from pentation (hyper-5) and beyond, ∀� ∈ ℕ − �0, 1
, 

the number of stable digits will increase for any unitary increment of the hyperexponent. Perhaps 

we should coin the term “congruence acceleration” (rather than congruence speed), speculating 

that hyper-5 may be characterized by a constant congruence acceleration, for any given � ∈ ℕ − �1
 ∶ � ≢ 0(mod 10). 

The special feature of tetration captured by Property 1 has been widely analyzed in [6]  

and confirmed for specific values of � [4, 10], including 
(2) = 1 (for any � ∈ ℕ ∶ � ≥ 3)  

[1, p. 148]. 
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Lemma 1 proves that ∃� such that, ∀� ≥ 2, 
(�, �) = 
(�) is a strictly positive integer, and 

we are absolutely convinced that the constancy of the congruence speed (when � ∈ ℕ is 

sufficiently large) is a general property [3], involving every base which is not a multiple of 10. 

Therefore, in the rest of this paper, we will assume Property 1 as a general axiom [6, 11]. 

Conjecture 1. Let 2 ∈ ℕN be such that 100  | 3 ��!" − �� 4 ∧ 100!" ∤ 3 ��!" − �� 4. Now, 

assume that � ∈ ℕ ∶ � ≥ 3. ∀� ∈ ℕ − �1
 ∶ � ≢ 0(mod 10), we have (� − 2) ∙ 
(�) ≤ 2 ≤(� + 1) ∙ 
(�) (e.g., � = 2 ⇒ 2 = (� − 2) ∙ (
(�) = 1) and, ∀Q ∈ ℕ − �0
, we have that � = 2R∙S ⇒ 2 = (� + 1) ∙ 
(�)). 

Remark 2. It is trivial to point out that Conjecture 1 implies that ∀� ∈ ℕ − �1
 ∶ � ≢ 0(mod 10) ∧ ∀� ∈ ℕ ∶ � ≥ 3, � ≡� �(mod 10�.;)�!" . 

Thus, for any � ≥ 3, we know that the rightmost � − 2 figures of the integer tetration ��  are 

stable digits: they form the same final string of ��T
, where �′ ∈ ℕ ∶ �′ > �. 

Hence, we get a conservative general upper bound �V for the hyperexponent �, applied to any 

base � (not a multiple of 10), which assures us that all the rightmost 2 figures of ��T
 are stable 

digits, for any �′ ≥ �V [6]: 

 �V = W 0�( )X + 2  (1)  

(where the ceiling ⌈Z⌉ denotes the function that takes the rational number Z as input and gives as 

output the least integer greater than or equal to Z). 

Therefore, ∀� ≥ 3, 
(�) ≤ 0�.; (e.g., if � = 143\;] and � ≥ 5, then 

4 = 
(�) ≤ 0 + 6 + 6 + 5 + ∑ 4�_`]� − 2 = 17 + (� − 4) ∙ 4� − 2  

is true, while � = 4 ⇒ 
(143\;]) ≤ "<;  and � = 3 ⇒ 
(143\;]) ≤ 12 are trivially verified). 

Furthermore, if Conjecture 1 holds, it follows that the maximum number of missed stable 

digits, for any given value of � and for a sufficiently large �, is 3 ∙ 
(�). 

We can consistently define V(1) = 0, extending the domain of 
: 
(�, �) = 
(�) ∀� ≥ � + 1 

(by Definition 1 and Property 1), if we observe that, for any 2 ∈ ℕ, ∄� ∈ ℕ − �0, 1
 such that 1�." ≡ 1(mod 100)� ∧ 1�." ≢ 1(mod 100!")� . 

Since 
(�) must belong to ℕ, it cannot be equal to +∞. 

In [6] the congruence speed has been introduced as the natural number which describes how 

many “new” stable digits appear at the beginning of the fixed figures array that is at the end of 

the result of the tetration, going from ��  to ��!" . 

This allow us to rewrite Definition 1 as follows. 

Definition 2. Let � ∈ ℕ ∶ � ≢ 0(mod 10), and let � ∈ ℕ − �0, 1
 be such that 100  | 3 �� − ��." 4 ∧ 100!" ∤ 3 �� − ��." 4, where 2 ∈ ℕ. Given � > 1, we define 
(�) ∈ ℕ to 

be such that 100!�( ) | 3 ��!" − �� 4 ∧ 100!�( )!" ∤ 3 ��!" − �� 4, and 
(� = 1) = 0. 
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Therefore, we assume that 
(1) = 0 without loss of generality, while 
(� = 0) is not defined 

for the reason stated above (even if it is possible to extend the domain of tetration by considering 

that lim →N � ∶= 0�� ⇒ 0� = 1 iff � is even ∧ 0� = 1 otherwise [2]). 

At this point, it is trivial to note that [10], ∀� ≥ � + 1, 
(�) = 0 iff � ≤ 1, as shown in Table 

1. 

f(%) 1 2 3 4 5 6 7 8 9 

0+ 0 1 1 1 2 1 2 1 1 

10+ 1 1 1 1 4 1 1 2 1 

20+ 1 1 1 2 3 2 1 1 1 

30+ 1 2 1 1 2 1 1 1 1 

40+ 1 1 2 1 2 1 1 1 2 

50+ 2 1 1 1 3 1 3 1 1 

60+ 1 1 1 1 6 1 1 3 1 

70+ 1 1 1 2 2 2 1 1 1 

80+ 1 2 1 1 2 1 1 1 1 

90+ 1 1 2 1 5 1 1 1 2 

100+ 2 1 1 1 3 1 2 1 1 

110+ 1 1 1 1 2 1 1 2 1 

120+ 1 1 1 3 2 3 1 1 1 

130+ 1 2 1 1 3 1 1 1 1 

140+ 1 1 2 1 4 1 1 1 2 

150+ 2 1 1 1 2 1 2 1 1 

160+ 1 1 1 1 2 1 1 2 1 

170+ 1 1 1 2 4 2 1 1 1 

180+ 1 4 1 1 3 1 1 1 1 

190+ 1 1 3 1 2 1 1 1 2 

200+ 2 1 1 1 2 1 2 1 1 

210+ 1 1 1 1 3 1 1 2 1 

220+ 1 1 1 2 5 2 1 1 1 

230+ 1 2 1 1 2 1 1 1 1 

240+ 1 1 2 1 2 1 1 1 3 

250+ 2 1 1 1 8 1 2 1 1 

260+ 1 1 1 1 3 1 1 2 1 

270+ 1 1 1 2 2 2 1 1 1 

280+ 1 2 1 1 2 1 1 1 1 

290+ 1 1 2 1 3 1 1 1 2 

300+ 2 1 1 1 4 1 2 1 1 

310+ 1 1 1 1 2 1 1 3 1 

320+ 1 1 1 2 2 2 1 1 1 

330+ 1 2 1 1 4 1 1 1 1 

340+ 1 1 2 1 3 1 1 1 2 

350+ 2 1 1 1 2 1 2 1 1 

360+ 1 1 1 1 2 1 1 2 1 

370+ 1 1 1 3 3 3 1 1 1 

380+ 1 2 1 1 7 1 1 1 1 

390+ 1 1 2 1 2 1 1 1 2 

Continued on next page 
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f(%) 1 2 3 4 5 6 7 8 9 

400+ 2 1 1 1 2 1 2 1 1 

410+ 1 1 1 1 5 1 1 2 1 

420+ 1 1 1 2 3 2 1 1 1 

430+ 1 3 1 1 2 1 1 1 1 

440+ 1 1 2 1 2 1 1 1 2 

450+ 2 1 1 1 3 1 2 1 1 

460+ 1 1 1 1 4 1 1 2 1 

470+ 1 1 1 2 2 2 1 1 1 

480+ 1 2 1 1 2 1 1 1 1 

490+ 1 1 2 1 4 1 1 1 2 

500+ 2 1 1 1 3 1 2 1 1 

510+ 1 1 1 1 2 1 1 2 1 

520+ 1 1 1 2 2 2 1 1 1 

530+ 1 2 1 1 3 1 1 1 1 

540+ 1 1 2 1 5 1 1 1 2 

550+ 2 1 1 1 2 1 2 1 1 

560+ 1 1 1 1 2 1 1 3 1 

570+ 1 1 1 2 6 2 1 1 1 

580+ 1 2 1 1 3 1 1 1 1 

590+ 1 1 2 1 2 1 1 1 2 

600+ 2 1 1 1 2 1 2 1 1 

610+ 1 1 1 1 3 1 1 2 1 

620+ 1 1 1 4 4 4 1 1 1 

630+ 1 2 1 1 2 1 1 1 1 

640+ 1 1 2 1 2 1 1 1 2 

650+ 2 1 1 1 4 1 2 1 1 

660+ 1 1 1 1 3 1 1 2 1 

670+ 1 1 1 2 2 2 1 1 1 

680+ 1 3 1 1 2 1 1 1 1 

690+ 1 1 2 1 3 1 1 1 2 

700+ 2 1 1 1 6 1 2 1 1 

710+ 1 1 1 1 2 1 1 2 1 

720+ 1 1 1 2 2 2 1 1 1 

730+ 1 2 1 1 5 1 1 1 1 

740+ 1 1 2 1 3 1 1 1 2 

750+ 3 1 1 1 2 1 2 1 1 

760+ 1 1 1 1 2 1 1 2 1 

770+ 1 1 1 2 3 2 1 1 1 

780+ 1 2 1 1 4 1 1 1 1 

790+ 1 1 2 1 2 1 1 1 2 

800+ 2 1 1 1 2 1 3 1 1 

810+ 1 1 1 1 4 1 1 3 1 

820+ 1 1 1 2 3 2 1 1 1 

830+ 1 2 1 1 2 1 1 1 1 

840+ 1 1 2 1 2 1 1 1 2 

850+ 2 1 1 1 3 1 2 1 1 

860+ 1 1 1 1 5 1 1 2 1 

870+ 1 1 1 3 2 3 1 1 1 

880+ 1 2 1 1 2 1 1 1 1 

890+ 1 1 2 1 7 1 1 1 2 

Continued on next page 
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 f(%) 1 2 3 4 5 6 7 8 9 

900+ 2 1 1 1 3 1 2 1 1 

910+ 1 1 1 1 2 1 1 2 1 

920+ 1 1 1 2 2 2 1 1 1 

930+ 1 3 1 1 3 1 1 1 1 

940+ 1 1 3 1 4 1 1 1 2 

950+ 2 1 1 1 2 1 2 1 1 

960+ 1 1 1 1 2 1 1 2 1 

970+ 1 1 1 2 4 2 1 1 1 

980+ 1 2 1 1 3 1 1 1 1 

990+ 1 1 2 1 2 1 1 1 3 

1000+ 3 1 1 1 2 1 2 1 1 

1010+ 1 1 1 1 3 1 1 2 1 

1020+ 1 1 1 2 10 2 1 1 1 

1030+ 1 2 1 1 2 1 1 1 1 

1040+ 1 1 2 1 2 1 1 1 2 

1050+ 2 1 1 1 5 1 3 1 1 

1060+ 1 1 1 1 3 1 1 6 1 

1070+ 1 1 1 2 2 2 1 1 1 

1080+ 1 2 1 1 2 1 1 1 1 

1090+ 1 1 2 1 3 1 1 1 2 

1100+ 2 1 1 1 4 1 2 1 1 

Table 1: 
(�) for � ≤ 1109. Given � > 1 such that � ≢ 0(mod 10), if 
(�) ≤ 2,  

then 
(�) = 
(� + Q ∙ 1000) for any Q ∈ ℕN (by Hypothesis 2). 

Hypothesis 1. ∀� ∈ ℕ − �1, 2
 ∶ � ≢ 0(mod 10), ∃�- ∈ ℕ − �0
 ∶ �- < � such that, ∀� ≥ �-, 
 g
(�) = 1 ⇔ �(mod 25) ∈ ℂ∁ = �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23
;
(�) ≥ 2 ⇔ �(mod 25) ∈ ℂ = �0, 1, 5, 7, 10, 15, 18, 20, 24
.  

Remark 3. It is important to notice that, if �(mod 25) ∈ ℂ∁ (or equivalently if 
(�) = 1), then 
(�m) ≥ 2 ∀n = 5 ∙ + (where + ∈ ℕ − �0
), and 
(�m) = 1 otherwise (for any n such that n(mod 10)  ≡ �1, 2, 3, 4, 6, 7, 8, 9
). 

On the contrary, for any base � (not a multiple of 10) such that �(mod 25) ∈ ℂ, 
(�,) ≥ 2 

(since also �,(mod 25) ∈ ℂ ∀+ ∈ ℕ − �0
). We point out that 
(�) ≥ 2 ⇒ �m!"(mod 25) ≡ �(mod 25), ∀n = 4 ∙ +. 

Proposition 1. Let � ∈ ℕ be such that � ≢ 0(mod 10). ∀Q ∈ ℕ, �;N∙S!" ≡ �(mod 25). 

Proof. ∀+ ∈ ℕ − �0
, we have 7(+) ≤ 6(+). Thus, 7(25) = 6(25) = 20. 

Let � be such that  gcd(�, 25) = 1 ⇔ gcd(�, 5) = 1, �q(;]) ≡ 1(mod 25) ⇒ �;N!" ≡ �(mod 25). 

Hence �;N∙S!" ≡ �(mod 25). 

Let � be such that � ≡ 5(mod 10), ∀n ∈ ℕ − �0, 1
, �m ≡ 0(mod 25) ⇒ �m ≡ �m!"(mod 25). 
Therefore, �;(mod 25) ≡ �:(mod 25) ≡ ⋯ ≡ �;N!"(mod 25) ≡ ⋯ ≡ �;N∙S!"(mod 25).   � 
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Hypothesis 2. ∀� ∈ ℕ − �1, 2
 ∶ � ≢ 0(mod 10), ∃�- ∈ ℕ − �0
 ∶ �- < � such that, ∀� ≥ �-, 

⎩⎪⎪
⎨⎪
⎪⎧
(�) = 1 ⇔ �(mod 25) ∈ ℂ∁ = �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23
;
(�) = 2 ⇔ �(mod 40) ∈ �5, 35
 ∨(�(mod 25) ∈ �1, 7, 18, 24
 ∧ �(mod 1000) ∉ ℚ∁);
(�) ≥ 3 ⇔ �(mod 40) ∈ �15, 25
 ∨ �(mod 1000) ∈ ℚ∁,where ℚ∁ = g1, 57, 68, 124, 126, 182, 193, 249, 318, 374, 376, 432, 568, 624, 626, 682, 751, 807, 818, 874, 876, 932, 943, 999 ~ .

 

Remark 4. We theorize that 
(�) = � originates a cycle for any � ∈ ℕ − �0
, where the 

fundamental period �(�) is such that �(1) = 25, �(2) = 10:, �(3) = 10R, etc. 

Additionally, we presume that, ∀� ∈ ℕ ∶ � ≥ �, 
(� ≡ 4(mod 10)) = 
(� ≡ 6(mod 10)) 

as a consequence of the size of the set ℂ∁ ∪ ℂ. 

Proposition 2. Let len(�_) ∈ ℕ ∶ 10 ��F( �)." < �_ < 10 ��F( �) denote the number of digits of 

the �-th term of any integer sequence �, ∶= �",  �;�" ,   … ,   �_.". . . �;�",   �_�_.". . . �;�", … 

constructed through the juxtaposition of its elements (i.e., ∀+ ∈ ℕ − �0, 1
 �, ∶= �,�,.", where �, ∈ ℕN is arbitrary). Given �" ≢ 0(mod 10), ∀� ∈ ℕ such that len(�_) ≥ 2, we have �_ � ≡ �_!" �@A (mod 10��F( �)). 
Proof. This particularity involving iterated exponentiation has been discussed in [6, p. 60], and 

two examples of the aforementioned property are given by the sequences A317824 and A317903 

of the OEIS [7, 8]. 

In [10] the authors proved that, ∀� ∈ ℕ ∶ � ≢ 0(mod 10) ∧ ∀+ ∈ ℕ ∶ + ≥ 2, there exists  

a unique (potentially unlimited) sequence of stable digits, that they indicated as �,(�) ∶= �,." … �;�"�N, such that � ≡ �,(�)(mod 10,)�  for a sufficiently large value of �. 

Now, let + ∶= len(�_) and assume + ≥ 2. Since � = �, the conditions stated in [4, 10] are 

always satisfied. This implies that, ∀len(�_) ≥ 2, if the congruence speed of any � > 9 (not a 

multiple of 10) is constant, then it is always greater or equal than 1 (see [10], Theorem 3, proof 

of Case I and Case II considering radix-10). 

Therefore (by Property 1), we conclude that the property captured by Proposition 2 definitely 

holds for any � ≢ 0(mod 10).                        � 

Conjecture 2. Let |�| denote the absolute value of � and let 2 ∈ ℕ − �0
 be such that � ≡� �(mod 100) ∧�!" � ≢� �(mod 100!")�!" . ∀� ∈ ℕ ∶ � ≡ �1, 3, 5, 7, 9
(mod 10) and 

 ∀� ∈ ℕ − �1
 ∶ � ≥ �, we have 

      �  (D�� "N�@A).  (D�� "N�@A)>>@A "N� � = �  (D�� "N�@A@�(#)).  (D�� "N�@A@�(#))>@A>@� "N�@�(#) �.        (2) 

Otherwise, ∀� ∈ ℕ ∶ � ≡ �2, 4, 6, 8
(mod 10) and ∀� ∈ ℕ − �2
 ∶ � ≥ �, we have 

    �  (D�� "N�@A).  (D�� "N�@A)>>@A "N� � = �  (D�� "N�@A@�∙�(#)).  (D�� "N�@A@�∙�(#))>@�>@� "N�@�∙�(#) �.        (3) 

Remark 5. In [6] it has already been shown the structure and the size of the cycles involving  

up to 4 figures on the left of the leftmost stable digit of �� , for any given � ≥ � (see  

[6, pp. 49−59]). 
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4 Main result: finding f(%) for any % ∶ % ≡ *(&'( ��) 

In the present section, we consider only bases of the tetration ��  such that their ending digit  

is 5. Thus let � ∶ � ≡ 5(mod 10). 

As shown in 2011 [6, pp. 22−23], given � ∈ ℕ: � = 2m ∙ ∏ �_��_J; , 
(��) = 
(�(;�)) = Z + n, 

where Z depends only on �, while n corresponds to the highest power of 2 that appears in the 

factorization of the exponent of �. 

If �∗ ∶= 5(;�), then 
(�∗) = 
(� = 5) + n = 2 + n (∀n ∈ ℕN). So, if we wish to construct 

a base � ≡ 5(mod 10) such that 
(�) = 1729, we can simply take �∗ = 53;A�����4 = 53;A���4. 
In general, let � be any integer greater or equal to 2. We can choose any � and take  � = 53;���4 in order to satisfy � = 
(� ∶ � ≡ 5(mod 10)), but the next natural question would 

be: “Is � = 5(;�) the smallest base such that, ∀� ∈ ℕ − �0 − 1
, � = 
(� ∶ � ≡ 5(mod 10))?”. 

The negative answer trivially follows from Table 1. 

Moreover, given � ≡ 5(mod 10) as usual, we can see that 


(�) = 2 ⇒ � ∶ g � ≡ 5(mod 40)� ≡ 35(mod 40),  
(�) = 3 ⇒ � ∶ g� ≡ 25(mod 80)� ≡ 55(mod 80), 


(�) = 4 ⇒ � ∶ g � ≡ 15(mod 160)� ≡ 145(mod 160),  
(�) = 5 ⇒ � ∶ g � ≡ 95(mod 320)� ≡ 225(mod 320), 


(�) = 6 ⇒ � ∶ g � ≡ 65(mod 640)� ≡ 575(mod 640),  
(�) = 7 ⇒ � ∶ g� ≡ 385(mod 1280)� ≡ 895(mod 1280), 


(�) = 8 ⇒ � ∶ g � ≡ 255(mod 2560)� ≡ 2305(mod 2560), 
(�) = 9 ⇒ � ∶ g� ≡ 1535(mod 5120)� ≡ 3585(mod 5120), 


(�) = 10 ⇒ � ∶ g� ≡ 1025(mod 10240)� ≡ 9215(mod 10240),  and so on. 

Thus, for every n ≥ 2, we can easily define short bases �� < 5(;�) such that 
(��) = �. 

Furthermore, �� ∶= (� ∶ 
(�) = �) + 10 ∙ 2�." ⇒ 
(��) ≥ � + 1, as shown in Figures 1 and 2. 
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Figure 1. 
(�) for 5 ≤ � ≤ 10285, where � ∶ � ≡ 5(mod 10). 

  

Figure 2. Period of � ∶ 
(�) = � ≥ 5, where � ≤ 10285 is such that � ≡ 5(mod 10). 
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We can easily find one half of all the (infinite) bases such that � = 
(� ∶ � ≡ 5(mod 10)). 

If 
35(;�)4 = 
(5) + n (see [6, pp. 16, 22-23]), it follows that 
35(;�) + Q ∙ 10 ∙ 2m!;4 = 2 + n. This means that also 


 �5 ∙ 2m!; + 1 + 2=R∙ m.;R ¡!;? − 2=R∙ mR ¡!\?3 + Q ∙ 10 ∙ 2m!;¢ 

is equal to 2 + n. 

Now, ∀n ∈ ℕN, it is clear that the other half of the values have to be such that, ∀Q ∈ ℕN, 

 
(�) = 2 + n ⇐ � = 5 ∙ 2m!; − 1 − ;=¤∙ ���¤ ¡@�?.;=¤∙ �¤ ¡@¥?: + Q ∙ 5 ∙ 2m!:.        (4) 

Thus, ∀� ∶ � ≡ 5(mod 10), if 
(�) = 2 + n, then 

� ∶ ¦� = 5 ∙ 2m!; − 2m!R ∙ sin =¨∙(m!"); ? + 2m!: ∙ cos =¨∙(m!"); ? + 1 + Q ∙ 5 ∙ 2m!:
� = 5 ∙ 2m!; + 2m!R ∙ sin =¨∙(m!"); ? − 2m!: ∙ cos =¨∙(m!"); ? − 1 + Q ∙ 5 ∙ 2m!: .       (5) 

Hence, ∀Q ∈ ℕN, 

  
(�) = 2 + n ⇒ � ∶ ©� = 2m!: ∙ ªcos =¨∙(m!"); ? − 2 ∙ sin =¨∙(m!"); ? + 5 ∙ =Q + ";?« + 1
� = 2m!: ∙ ª2 ∙ sin =¨∙(m!"); ? − cos =¨∙(m!"); ? + 5 ∙ =Q + ";?« − 1.   (6) 

Theorem 1. Let � ∶ � ≡ 5(mod 10) be the base of the tetration �� . Let � ∈ ℕ ∶ � ≥ 3. ∀Q ∈ ℕN, 
(�) = 2 + n ⇔ � = (�m ∨ ¬m) + Q ∙ 10 ∙ 2m!;, where (∀n ∈ ℕN) �m ∶= 2m!; ∙ =2 ∙ cos =¨∙(m!"); ? − 4 ∙ sin =¨∙(m!"); ? + 5? + 1 = (5, 25, 145, 225, 65, 385, … ) 

and ¬m ∶= 2m!; ∙ =4 ∙ sin =¨∙(m!"); ? − 2 ∙ cos =¨∙(m!"); ? + 5? − 1 =(35, 55, 15, 95, 575, 895, … ). Furthermore, for any �, �, and n as above, we have 

     �� ≡ �(mod 100)�!" ∧ �� ≢ �(mod 100!")�!" ⇔  2 = (2 + n) ∙ (� + 1).       (7) 

Proof. Let � ∶ � ≡ 5(mod 10) be given. If � ≥ �, then � = 
(�) is independent from � 

(by Property 1). 

In [6, pp. 16, 19-20] it has been shown that the constraint � ≥ � is a sufficient but not 

a necessary condition. In particular, for any given � ∶ � ≡ 5(mod 10), if � ≥ 3, then  
(�, �) = 
(�). 

Now, if �� ≡ �(mod 100)�!" ∧ �� ≢ �(mod 100!")  ⇒ 2 = (2 + n) ∙ (� + 1)�!" , then 10�∙(;!m)!m!; |3 � −�!" �� 4 ∧ 10�∙(;!m)!m!: ∤ 3 � −�!" �� 4 ⇒  2 = (2 + n) ∙ (� + 1). 

Hence, 

 10�∙(�!") |3 � −�!" �� 4 ∧ 10�∙(�!")!" ∤ 3 � −�!" �� 4 ⇒  2 = � ∙ (� + 1). 

Therefore, given � ≥ 3, we have 
(�, 1)) + 
(�, 2)) = 3 ∙ 
(�, �)), for any � such that � ≡ 5(mod 10). 
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Thus, 2 = 3 ∙ � + (� − 2) ∙ �, where 2 represents the maximum number of stable digits 

originated by �� , for any given � ≥ 3 (see Definitions 1 and 2). This proves the last statement 

of Theorem 1. 

In order to prove that the main statement is also true, we may observe that 

5(;�)(mod 5 ∙ 2m!:) ≡ 5 ∙ 2m!; − 2m!R ∙ sin =¨∙(m!"); ? + 2m!: ∙ cos =¨∙(m!"); ? + 1. 

Hence, ∀n, Q ∈ ℕN, 
(�∗ ∶= 5(;�) + Q ∙ 10 ∙ 2m!;) = 2 + n. 

Thus, �∗ = �m + Q ∙ 10 ∙ 2m!; ⇒ 
(�∗) = 2 + n = 
(�). 

Let �∗∗ be the other half of the bases. �∗∗ is such that, ∀n ∈ ℕN, 
(�) = 2 + n ⇒ � ∶ � = (�∗ ∨ �∗∗), and �∗∗ has the same fundamental period of �∗, so 
(�∗∗ + 5 ∙ (−2)m!;) = 
(�∗∗) + 1 if and only if 
(�∗) + 1 = 
(�∗ + 5 ∙ (−2)m!;). 

In fact, ∀n ∈ ℕN, we have �∗(mod 5 ∙ 2m!:) + �∗∗(mod 5 ∙ 2m!:) = 5 ∙ 2m!:. 

Moreover, (given � ∶ � ≡ 5(mod 10) as usual), we can take one solution �(m`N) ≡ 35(mod 40) of 
(� ≡ 35(mod 40)) = 2 (since we need a base such that 
(� ≢ 5(mod 20)) = 2), add it to 5 ∙ (−2)N!;, and compute the residue modulo 5 ∙ 2R. So, let �N = 35. In general, ∀Q, we have �m!" ≡ (�m + 5 ∙ (−2)m!;)(mod 5 ∙ 2m!R) ⇒ 
(�m!") =
(�m + Q ∙ 10 ∙ 2m!;) + 1 = n + 3. 

Thus, 

 
 =¬m ∶=  2m!; ∙ =4 ∙ sin =¨∙(m!"); ? − 2 ∙ cos =¨∙(m!"); ? + 5? − 1? = 2 + n = 
(�m). 

If � ∶ � ≡ 5(mod 10) does not belong to ¬m, then it must belong to �m (and vice versa). 

Therefore, we have also shown that 
(�) = 2 + n ⇒ � = (�m + Q ∙ 10 ∙ 2m!;  ∨  ¬m + Q ∙ 10 ∙ 2m!;), 

and this completes the proof of Theorem 1.               � 

Corollary 1. Let ­ represent the Kronecker delta, the function of two variables defined by ­_,® ∶= g0 �¯ � ≠ ±1 �¯ � = ±. Let + ∈ ℕN. Let �, ∶= 5 + + ∙ 10 be the base of the tetration �,� , where � ∈ ℕ ∶ � ≥ 3. ∀� ∈ ℕ − �0, 1
, we have 

 lim²→!³ ª ∑ ´�(#µ),�¶µ·¸∑ ´�(#µ),�@A¶µ·¸ « = 2.   (8) 

Proof. Assume � be such that � ≡ 5(mod 10). Then, ∀� ∈ ℕ ∶ � ≥ 3, 
(�, �) = 
(�) (this 

follows from Property 1 and Theorem 1). 

Let Q, + ∈ ℕN. Assume n ∈ ℕN is given. By Theorem 1, if �, ∶= 5 + + ∙ 10 and � ≥ 3, then 


(�,) = n + 2 ⇔ �, = 2m!; ∙ =4 ∙ sin =¨∙(m!"); ? − 2 ∙ cos =¨∙(m!"); ? + 5? − 1 + Q ∙ 5 ∙ 2m!:  

or 

 �, = 2m!; ∙ =−4 ∙ sin =¨∙(m!"); ? + 2 ∙ cos =¨∙(m!"); ? + 5? + 1 + Q ∙ 5 ∙ 2m!:. 

It follows that the amount of bases � such that 
(�) = n + 2 is proportional to the reciprocal 

of the (unique) period Q ∙ 5 ∙ 2m!:. 

We proceed by induction on n in order to prove that (8) is true for any � ∈ ℕ ∶ � = n + 2. 
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We prove the base case. n = 0 ⇒ 2 = 
(�) ⇔ 
(� + Q ∙ 5 ∙ 2:) = 2, while n = 1 ⇒ 3 = 
(�) ⇔ 
(� + Q ∙ 5 ∙ 2R) = 3, for any �. Hence,  

lim²→!³ ª∑ ´�(#µ),�¶µ·¸∑ ´�(#µ),�¶µ·¸ « = S∙]∙;¤S∙]∙;� = 2 

is true (since ¹ → +∞ guarantees that Q is always greater than zero). 

Now, we define the induction step. Let I ∈ ℕN be given and suppose 

lim²→!³ º∑ ­�( µ),m!;²,`N∑ ­�( µ),m!:²,`N » = 2 

is true for n = I. Then, 2 + I = 
(�) ⇔ 
(� + Q ∙ 5 ∙ 2:!¼) = 2 + I, while I + 1 = 
(�) ⇔
(� + Q ∙ 5 ∙ 2R!¼) = I + 1. Hence, 

lim²→!³ º ∑ ­�( µ),¼²,`N∑ ­�( µ),¼!"²,`N » = Q ∙ 5 ∙ 2;!¼!"Q ∙ 5 ∙ 2;!¼ = 2 

is also true. 

Thus (8) holds for n = I + 1, and this concludes the proof of the inductive step. 

Therefore, (8) is true for any � ∈ ℕ − �1, 2
.              � 

Corollary 2. Let � ∈ ℕ ∶ � ≥ 3 be the hyperexponent of the tetration �� . ∀� ∈ ℕ, ∃�, not a multiple of 10, such that 
(�) = �. 

Proof. Theorem 1 implies the existence of infinite bases of the form 

� = 2m!; ∙ ª4 ∙ sin ª½ ∙ (n + 1)2 « − 2 ∙ cos ª½ ∙ (n + 1)2 « + 5« − 1 + Q ∙ 5 ∙ 2m!: 

such that 
(�) = 2 + n, for any n ∈ ℕN. 

In order to complete the proof, we need to show the existence of a base �¾ such that  
(�¾) = 1, since 
(1) = 0 follows from the definition stated in Section 3. Lemma 1 gives us �¾ = 3 ⇒ 
(�¾) = 1 for any � ≥ 2. 

Therefore, 

� = g
(1) ∪ 
(3) ∪ 
 ª2m!; ∙ ª4 ∙ sin ª½ ∙ (n + 1)2 « − 2 ∙ cos ª½ ∙ (n + 1)2 « + 5« − 1«~ 

covers any natural number, including zero. � 

Another (constructive) way to prove Corollary 2 would have been to verify that, for any  

n-digits long base � ≔ 10, − 1, 
(�) = + (∀�). Moreover, we infer that, ∀Q ∈ ℕN, 
 =� ∶ � = (10, − 1)3"NÀ4? = 
((10, − 1) + Q), (see [6, pp. 25−26]). 

Finally, it is trivial to note that from Corollary 1 and the proof of Corollary 2 it naturally 

follows that 

lim²→³ ª ∑ ´�(#µ),�¶µ·¸∑ ´�(#µ),�@Á¶µ·¸ « = 2�!", 

for any Â ∈ ℕN. 
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5 Periods of the cycles of % such that f(%) is given 

The question that we wish to answer in this section is: “Let 
(�) be unique for any given base of 

the tetration ��  (assume for simplicity that � ∈ ℕ ∶ � ≥ (� + 1) ∧ � ∈ ℕ − �1
 ∶ � ≢0(mod 10)), is it possible to identify the function � ∶ ℤ! → ℤ! defined as �3
(�)4 = min3� ∈ ℕ − �0
 ∶ 
(�) = 
(� + Q ∙ �), ∀Q ∈ ℕN ∧ ∀� ∈ ℕ − �1
 ∶ � ≢ 0(mod 10)4  (9) 

(e.g., � = 7 ⇒ �(
(7) = 2) = �(2) = 1000 by Hypothesis 2)?”. 

Corollary 2 assures us that �3
(�)4 is well-defined ∀
(�) ∈ ℕ − �0
. Moreover, we claim 

that 

    �3
(�)4 = g 25             iff  
(�) = 110�( )!"  iff  
(�) ≥ 2  .       (10) 

In order to show the validity of (10), let us firstly solve a weaker version of the problem above, 

introducing the additional condition that any base of the integer tetration ��  must belong to the 

set 

   ℳ = �(� ∶ �(mod 25) ∈ ℂ∁)  ∪  (� ∶ � ≡ 5(mod 10))
, 

where ℂ∁ = �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23
 as stated in Hypothesis 1. 

Under the aforementioned additional constraint, we derive the following lemma. 

Lemma 2. Let � ∈ ℕ ∶ � ≥ (� + 1) and let every base of the tetration ��  belong to the set ℳ = �� ∶ (�(mod 25) ∈ ℂ∁ ∨ � ≡ 5(mod 10))
. For every � ∈ ℕ − �0
 ∶ � = 
(�), the 

function �′(�) ∶= min(� ∈ ℕ − �0
 ∶ � = 
((� ∈ ℳ) + Q ∙ �), ∀Q ∈ ℕ) ∪ �(
(�) = 1) 

can be rewritten as 

   �′(�) = �′3
(� ∈ ℳ)4 = Æ  25          iff  � = 1 2� ∙ 10   iff  � ≥ 2  .        (11) 

Proof (assuming Hypothesis 1): It is trivial to point out that Hypothesis 1 covers the case �′3
(� ∈ ℳ)4 = 25 iff � = 1. Thus, �(mod 25) ∈ ℂ∁ ⇔ 
(�) = 1 ⇔ �′3
(�)4 = 25. 

If � ∶ � ≡ 5(mod 10), then 
(�) is always greater or equal to 2. 

By Theorem 1, we have 
(�) = 2 + n ⇔ � = (�m ∨ ¬m) + Q ∙ 10 ∙ 2m!;, ∀n ∈ ℕN. 

Therefore, the fundamental period of �m is the same as the fundamental period of ¬m, and it 

is equal to 10 ∙ 2m!;. Since, for any Q ∈ ℕN, � ∶ � ≡ 5(mod 10) ⇒ � = (�m ∨ ¬m) + Q ∙ 10 ∙ 2m!;, and considering that � =  n + 2, we deduce that (11) is true.  � 

Now, let us examine the result that follows from Lemma 2.  

Let the fundamental period of �] ∶= 
3� ∶ � ≡ 5 (mod 10)4 be �](�]) = 5 ∙ 2�!". 

The fundamental period of ��;,R,\,Ç
 ∶= 
(� ∶ �(mod 10) ∈ �2, 4, 6, 8
) would most likely be ��;,R,\,Ç
3��;,R,\,Ç
4 = 5 ∙ 10� (see [6, pp. 23-24]). Thus, considering any base � ≢ 0(mod 10) 

such that ��;,:,R,],\,<,Ç,È
 ∶= 
(� ∶ �(mod 10) ∈ �2, 3, 4, 5, 6, 7, 8, 9
), ��;,:,R,],\,<,Ç,È
(��;,:,R,],\,<,Ç,È
) ≥gcd(5 ∙ 2�!", 2� ∙ 5�!") = 10�!" = �"(
(� ∶ � ≡ 1(mod 10))). 

Hence, ∃� ∈ ℕ − �0
 such that �(
(� ∶ �(mod 10) ∈ �1, 2, 3, 4, 5, 6, 7, 8, 9
)) = � ∙ 10�!", 

and we conjecture that, ∀
(�) ∈ ℕ − �0, 1
, � = 1. 
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Theorem 2. Let 
(�) be strictly greater than 1. If �3
(�)4 ∶= min3� ∈ ℕ − �0
 ∶ 
(�) =
(� + Q ∙ �), ∀Q ∈ ℕ ∧ ∀� ∈ ℕ − �1
: � ≢ 0(mod 10)4, then �3
(�)4 ∈ ℕ ⇔ �3
(�)4 =10 ∙ � ∙ �(
(�) − 1), where � ∈ ℕ − �0
. 

Proof (assuming Hypothesis 2). If � is the base of the integer tetration ��  (for simplicity assume � ≥ �), then 
(�, �) = 
(�) for any � ∈ ℕ − �1, 2
 ∶ � ≢ 0(mod 10) (by Property 1), while 
(2) = 1 ∀� ∈ ℕ ∶ � ≥ 3 (see [1, p. 148]). 

We prove Theorem 2 by induction on 
(�): “∀
(�) ≥ 2, �3
(�)4 = 10 ∙ � ∙ �(
(�) − 1), 

where � ∈ ℕ − �0
”. 

Let us start with the base case, so 
(�) = 2. Assuming Hypothesis 2, �(
(�) = 2) = �(1) ∙ �-(2) = 4 ∙ 10 ∙ �(1) by Lemma 2 (see (11)), and � = 4. 

In order to prove the inductive step, let + ∈ ℕ − �0, 1
 be given and suppose Theorem 2 holds 

for 
(�) = +. It is easy to verify that, ∀Â ∈ ℕ such that Â ≢ 0(mod 10), 

 
(Â ∙ 10, + 1) = + [6, p. 21]. 

In particular, we have 
(10, + 1) = 
(2 ∙ 10, + 1) =  …  = 
(Â ∙ 10, + 1) = +, and + < 
3� ∶ � ≡ 1(mod 10,!")4. 

It follows that, �(+ + 1) = �3
(Â ∙ 10,!" + 1)4 = ± ∙ �(+), where ± ∈ ℕ − �0
. In fact, 

for any + ≥ 2, if �3
(�)4 ∈ ℕ, then �(+ + 1) is a multiple of �(+) (including the case ± = 1 ⇒ �(+ + 1) = �(+)), by definition (see (9)). 

Thus, we need to prove that ± is a multiple of 10. 

For this purpose, we observe that, by definition (9), ∄� ∶ 
 =� + ± ∙ �3
(�)4? ≠ 
(�).  

We observe also that 
3� ∶ � ≡ 1(mod 10,!;)4 > + + 1. Now, let Â ≢ 0(mod 10) as stated 

before. 

Then, given ± ∈ ℕ − �0
, ∀+ ∈ ℕ − �0, 1
, ∄Â ∈ ℕ such that 

   Â ∙ 10,!" + 1 + �(
(�) + 1) ≡ 1(mod 10,!;) 

 ⇒ Â ∙ 10,!" + 1 + ± ∙ �3
(�)4 ≡ 1(mod 10,!;) (12) 

     ⇒ Â ∙ 10,!" + ± ∙ �(Â ∙ 10, + 1) ≡ 0(mod 10,!;). 

Hence, Â + ± cannot be a multiple of 10. Since Â ≢ 0 (mod 10) by hypothesis, it follows that ± ≡ 0(mod 10). Otherwise, ∀± ∈ ℕ ∶ ± ≢ 0(mod 10), ∃Â ≢ 0(mod 10) such that (12) is true, 

which is a contradiction (e.g., if + = 2, Â ∙ 10: + ± ∙ 10: ≡ 0(mod 10R) ⇒ Â = 10 − ± satisfies 

(12)). Thus ± = � ∙ 10, where � ∈ ℕ − �0
. This implies that �(
(�) + 1) = � ∙ 10 ∙ �3
(�)4. 

Therefore, Theorem 2 holds for 
(�) = + + 1, and the proof of the inductive step is complete. 

By the principle of induction, Theorem 2 is true for every 
(�) ∈ ℕ ∶ 
(�) ≥ 2.  � 

6 Conclusion 

Assuming Property 1, we have shown the laws that describe the congruence speed of any base � 

such that � ≡ 5(mod 10) (see Theorem 1). 

In general, if � ∈ ℕ − �1
 ∶ � ≢ 0(mod 10), then all the bases of the tetration ��  form a set 

of periodic sequences modulo multiples of 25 for any 
(�) = ÂÉ+�I�+I, and we claim that the 

function which maps the fundamental periods is given by (10). 
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An interesting question to be answered in conclusion would be: Let � ∈ ℕ ∶ � ≢ 0(nÉ2 10), and assume � ≥ �®, where �® ∶= min(� ∶ 
(�) = ±, ∀± ∈ ℕ − �0, 1
): is �® ≡ 5(nÉ2 10) for any ±?. 

We are persuaded that the answer is affirmative (Table 1 shows that it is true for any ± < 9), 

but the inference that ∄�® ≠ min =2®!; ∙ =2 ∙ cos =¨∙(®!"); ? − 4 ∙ sin =¨∙(®!"); ? + 5? + 1,  2®!; ∙ =4 ∙ sin =¨∙(®!"); ? − 2 ∙ cos =¨∙(®!"); ? + 5? − 1? needs a mathematical proof. 
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