Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 4, Pages 861–880
DOI: 10.7546/nntdm.2023.29.4.861-880
Full paper (PDF, 267 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Dept. of Bioinformatics and Mathematical Modelling,
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria
Abstract
The concept of the object called “tertion” is discussed. Some operations over tertions are introduced and their properties are studied. The relationship between tertions, complex numbers are quaternions are discussed.
Keywords
- Complex number
- Quaternion
- Tertion
2020 Mathematics Subject Classification
- 20G20
- 97F50
References
- Absalom, E. E., Abdullahi, M., Sani, B., & Sahalu, J. B. (2011). Application of Strassen’s algorithm in rhotrix row–column multiplication. Nigeria Computer Society, 10th Int. Conf., 25-29 July 2011.
- Ajibade, A. O. (2003). The concept of rhotrix for mathematical enrichment. International Journal of Mathematical Education in Science and Technology, 34, 175–179.
- Aminu, A. (2009). On the linear systems over rhotrices. Notes on Number Theory and Discrete Mathematics, 15(4), 7–12.
- Aminu, A. (2010). The equation Rnx = b over rhotrixes. International Journal of
Mathematical Education in Science and Technology, 41(1), 98–105. - Aminu, A. (2010). An example of linear mappings: extension to rhotrices. International Journal of Mathematical Education in Science and Technology, 41(5), 691–698.
- Aminu, A., & Michael, O. (2015). An introduction to the concept of paraletrix, a
generalization of rhotrix. Journal of the African Mathematical Union, 26(5–6), 871–885. - Aminu, A. (2010). Rhotrix vector spaces. International Journal of Mathematical Education in Science and Technology, 41(4), 531–573.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 1. Preprint MRL-1-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 2. Preprint MRL-2-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 3. Preprint MRL-3-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 4. Preprint MRL-4-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 5. Preprint MRL-5-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 6. Preprint MRL-6-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 7. Preprint MRL-7-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 8. Preprint MRL-8-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov, K. (1994). A new algebraic object related to matrices. Part 9. Preprint MRL-9-94, Math. Research Lab. of Microsystems Institute, Sofia.
- Atanassov K., & Shannon, A. G. (1998). Matrix-tertions and matrix-noitrets: Exercises in mathematical enrichment. International Journal of Mathematical Education in Science and Technology, 29(6), 898–903.
- Cantor, I., & Solodovnikov, A. (1973). Hypercomplex Numbers. Moscow, Nauka (in Russian).
- Dieudonne, J. Algebre Lineaire et Geometrie Elementaire. Paris, 1968.
- Ezugwu, E. A., Ajibade, A. O., & Mohammed, A. (2011). Generalization of heart-oriented rhotrix multiplication and its algorithm implementation. International Journal of Computer Applications, 13(3), 5–11.
- Ezugwu, E. A., Sani, B., & Sahalu, J. B. (2011). The Concept of Heart Oriented Rhotrix Multiplication. Global Journal of Science Frontier Research, 11(2), 35–46.
- Isere, A. O. (2016). Natural Rhotrix. Cogent Mathematics, 3(1), Article 1246074.
- Isere, A. O. (2017). Note on classical and non-classical rhotrix. The Journal of the
Mathematical Association of Nigeria, 44(2), 119–124. - Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206–219.
- Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24(2), 125–133.
- Isere, A. O., & Adeniran, J. O. (2018). The concept of rhotrix quasigroups and rhotrix loops. Journal of the Nigerian Mathematical Society, 37(3), 139–153.
- Kaurangini, M. L., & Sani, B. (2007). Hilbert Matrix and its Relationship with a Special Rhotrix. ABACUS (Journal of Mathematical Association of Nigeria), 34(2A), 101–106.
- Lang, S. (2002). Algebra (Revised 3rd ed.). New York, Springer-Verlag.
- Mohammed, A. (2007). A note on rhotrix exponent rule and its applications to some special series and polynomial equations defined over rhotrices. Notes on Theory and Discrete Mathematics, 13(1), 1–15.
- Mohammed, A. (2007). Enrichment exercises through extension to rhotrices. International Journal of Mathematical Education in Science and Technology, 38(1), 131–136.
- Mohammed, A. (2008). Rhotrices and their applications in enrichment of mathematical algebra. Proceedings of 3rd International Conference on Mathematical Sciences (ICM-2008), United Arab Emirate University Press, Al-Ain. Vol. 1, 145–154.
- Mohammed, A. (2009). A remark on classifications of rhotrices as abstract structures. International Journal of Research in Physical Sciences, 4(8), 192–197.
- Mohammed, A. (2011). Theoretical development and applications of rhotrices. Ph.D dissertation, Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria.
- Mohammed, A. (2014). A new expression for rhotrix. Advances in Linear Algebra & Matrix Theory, 4, 128–133.
- Mohammed, A., Balarabe, M., & Imam, A. T. (2012). Rhotrix Linear Transformation. Advances in Linear Algebra & Matrix Theory, 2, 43–47.
- Mohammed, A., & Sani, B. (2011). On construction of rhomtrees as graphical representation of rhotrices. Notes on Theory and Discrete Mathematics, 17(1), 21–29.
- Mohammed, A., & Okon, U. (2016). On subgroups of non-commutative general rhotrix group. Notes on Number Theory and Discrete Mathematics, 22(2), 72–90.
- Mohammed, A., & Tella, Y. (2012). Rhotrix Sets and Rhotrix Spaces Category.
International Journal of Mathematics and Computational Methods in Science and Technology, 2, 21–25. - Ndubuisi, R. U., Nwajeri, U. K., Onyenegecha, C. P.,Patil, K. M., Udoaka, O. G., & Osuji, W. I. (2022). Linear mappings in paraletrix spaces and their application to fractional calculus. Notes on Number Theory and Discrete Mathematics, 28(4), 698–709.
- Patil, K. (2021). Characterization of ideals of rhotrices over a ring and its applications. Notes on Number Theory and Discrete Mathematics, 27(1), 138–147.
- Patil, K. M., Singh, H. P., & Sutaria, K. A. (2015). The eigen values of any given 3 × 3 matrix via eigen values of its corresponding rhotrix. International Journal of Computer and Mathematical Sciences, 4(11), 1–4.
- Peter, C. M. (2012). Row-wise representation of arbitrary rhotrix. Notes on Number Theory and Discrete Mathematics, 18(2), 1–27.
- Sani, B. (2004). An alternative method for multiplication of rhotrices. International Journal of Mathematical Education in Science and Technology, 35(5), 777–781.
- Sani, B. (2007). The row-column multiplication of high dimensional rhotrices. International Journal of Mathematical Education in Science and Technology, 38(5), 657–662.
- Sani, B. (2008). Conversion of a rhotrix to a ‘coupled matrix’. International Journal of Mathematical Education in Science and Technology, 39(2), 244–249.
- Sani, B. (2009). Solution of Two Coupled Matrices. The Journal of the Mathematical Association of Nigeria, 36(2), 53–57.
- Sharma, P. L., & Kanwar, R. K. (2012). The Cayley–Hamilton theorem for rhotrices. International Journal Mathematics and Analysis, 4(1), 171–178.
- Tudunkaya, S. M., & Usaini, S. (2020). Rhotrix-modules and the multi-cipher hill ciphers. Journal of the Nigerian Mathematical Society, 39(2), 269–285.
- Usaini, S., & Mohammed, L. (2012). On the rhotrix eigenvalues and eigenvectors. Journal of the African Mathematical Union, 25, 223–235.
- Usaini, S., & Aminu, A. (2017). Exponential function of rhotrices. International Journal of Mathematics and Statistics, 18(1), 21–29
Manuscript history
- Received: 19 October 2023
- Revised: 17 November 2023
- Accepted: 6 December 2023
- Online First: 29 December 2023
Copyright information
Ⓒ 2023 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Mohammed, A. (2007). A note on rhotrix exponent rule and its applications to some special series and polynomial equations defined over rhotrices. Notes on Theory and Discrete Mathematics, 13(1), 1–15.
- Aminu, A. (2009). On the linear systems over rhotrices. Notes on Number Theory and Discrete Mathematics, 15(4), 7–12.
- Mohammed, A., & Sani, B. (2011). On construction of rhomtrees as graphical representation of rhotrices. Notes on Theory and Discrete Mathematics, 17(1), 21–29.
- Peter, C. M. (2012). Row-wise representation of arbitrary rhotrix. Notes on Number Theory and Discrete Mathematics, 18(2), 1–27.
- Mohammed, A., & Okon, U. (2016). On subgroups of non-commutative general rhotrix group. Notes on Number Theory and Discrete Mathematics, 22(2), 72–90.
- Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24(2), 125–133.
- Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206–219.
- Patil, K. (2021). Characterization of ideals of rhotrices over a ring and its applications. Notes on Number Theory and Discrete Mathematics, 27(1), 138–147.
- Ndubuisi, R. U., Nwajeri, U. K., Onyenegecha, C. P.,Patil, K. M., Udoaka, O. G., & Osuji, W. I. (2022). Linear mappings in paraletrix spaces and their application to fractional calculus. Notes on Number Theory and Discrete Mathematics, 28(4), 698–709.
- Atanassov, K. (2024). On tertions and dual numbers. Notes on Number Theory and Discrete Mathematics, 30(2), 443-452, DOI: 10.7546/nntdm.2024.30.2.443-452.
Cite this paper
Atanassov, K. T. (2023). On tertions and other algebraic objects. Notes on Number Theory and Discrete Mathematics, 29(4), 861-880, DOI: 10.7546/nntdm.2023.29.4.861-880.