**Kailash M. Patil**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 1, Pages 138–147

DOI: 10.7546/nntdm.2021.27.1.138-147

**Full paper (PDF, 236 Kb)**

## Details

### Authors and affiliations

Kailash M. Patil

*Department of Mathematics, Dharmsinh Desai University
Nadiad, Gujarat 387001, India
*

### Abstract

We define higher order rhotrices over a commutative unital ring and obtain a ring of rhotrices of the order . We characterize the ideals and maximal ideals of . As a particular case, we record ideals of rhotrix rings over integers and rhotrix algebras over complex plane . As an application, we characterize the maximal ideals of the commutative unital Banach algebra .

### Keywords

- Rhotrix over a ring
- Unital ring
- Maximal ideal
- Banach algebra

### 2010 Mathematics Subject Classification

- 15B99
- 46J20

### References

- Ajibade, A. O. (2003). The concept of rhotrix in mathematical enrichment. International Journal of Mathematical Education in Science and Technology, 34(2), 175–179.
- Atanassov, K. T., & Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercises in Mathematical Enrichment. International Journal of Mathematical Education in Science and Technology, 29, 898–903.
- Bhatt, S. J., & Karia, D. J. (1998). A note on Banach algebras without order. Prajna Journal of Sardar Patel University, 8(1), 30–32.
- Isere, A. O. (2018). Even dimensional rhotrix.
*Notes on Number Theory and Discrete Mathematics*, 24(2), 125–133. - Isere, A. O. (2019). Representation of higher even-dimensional rhotrix.
*Notes on Number Theory and Discrete Mathematics*, 25(1), 206–219. - Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract structures. International Journal of Physical Sciences, 4(9), 496–499.
- Mohammed, A. (2011). Theoretical Development and Applications of Rhotrices. PhD thesis, Ahmadu Bello University, Zaria.
- Mohammed, A., & Okon, U. E. (2016). On subgroups of non-commutative general rhotrix group.
*Notes on Number Theory and Discrete Mathematics*, 22(2), 72–90. - Patil, K. M., Singh, H. P., & Sutaria, K. A. (2015). The eigen values of any given 3×3 matrix via eigen values of its corresponding rhotrix. International Journal of Computer and Mathematical Sciences, 4(11), 1–4.
- Sani, B. (2007). The row-column multiplication of high dimensional rhotrices. International Journal of Mathematical Education in Science and Technology, 38(5), 657–662.
- Sani, B. (2008). Conversion of a rhotrix to a ‘coupled matrix’. International Journal of Mathematical Education in Science and Technology, 39(2), 244–249.
- Sharma, P. L. & Kanwar, R. K. (2012). The Cayley–Hamilton theorem for rhotrices. International Journal Mathematics and Analysis, 4(1), 171–178.
- Usaini, S. & Aminu, A. (2017). Exponential function of rhotrices. International Journal of Mathematics and Statistics, 18(1), 21–29.

## Related papers

- Mohammed, A., & Okon, U. E. (2016). On subgroups of non-commutative general rhotrix group.
*Notes on Number Theory and Discrete Mathematics*, 22(2), 72-90. - Isere, A. O. (2018). Even dimensional rhotrix.
*Notes on Number Theory and Discrete Mathematics*, 24(2), 125-133. - Isere, A. O. (2019). Representation of higher even-dimensional rhotrix.
*Notes on Number Theory and Discrete Mathematics*, 25(1), 206-219. - Atanassov, K. T. (2023). On tertions and other algebraic objects.
*Notes on Number Theory and Discrete Mathematics*, 29(4), 861-880.

## Cite this paper

Patil, K. M. (2021). Characterization of ideals of rhotrices over a ring and its applications. *Notes on Number Theory and Discrete Mathematics*, 27(1), 138-147, DOI: 10.7546/nntdm.2021.27.1.138-147.