A. O. Isere

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 1, Pages 206—219

DOI: 10.7546/nntdm.2019.25.1.206-219

**Download full paper: PDF, 187 Kb**

## Details

### Authors and affiliations

A. O. Isere

*Department of Mathematics, Ambrose Alli University
Ekpoma, 310001, Nigeria
*

### Abstract

The multiplication of higher even-dimensional rhotrices is presented and generalized. The concept of empty rhotrix, and the necessary and sufficient conditions for an even-dimensional rhotrix to be represented over a linear map, are investigated and presented.

### Keywords

- Even-dimensional rhotrix
- Representation
- Empty rhotrix
- Multiplication
- Linear map

### 2010 Mathematics Subject Classification

- 15B99

### References

- Ajibade, A. O. (2003). The concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology, 34 (2), 175–177.
- Aminu, A. (2009). On the Linear System over Rhotrices, Notes on Number Theory and Discrete Mathematics, 15 (4), 7–12.
- Aminu, A. & Michael, O. (2015). An introduction to the concept of paraletrix, a generalization of rhotrix, Journal of the African Mathematical Union & Springer-Verlag, 26 (5–6), 871–885.
- Atanassov, K. T. & Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercise for Mathematical Enrichment, International Journal Mathematical Education in Science and Technology, 29 (6), 898–903.
- Chinedu, M. P. (2012). Row-Wise Representation of Arbitrary Rhotrix, Notes on Number Theory and Discrete Mathematics, 18 (2), 1–27.
- Ezugwu, E. A., Ajibade, A. O. & Mohammed, A. (2011). Generalization of Heart-Oriented rhotrix Multiplication and its Algorithm Implementation, International Journal of Computer Applications, 13 (3), 5–11.
- Isere, A. O. (2016). Natural Rhotrix. Cogent Mathematics, 3 (1) , 1–10 (article 1246074).
- Isere, A. O. (2017). A note on the Classical and Non-Classical rhotrices, The Journal of Mathematical Association of Nigeria (Abacus), 44(2), 119–124.
- Isere, A. O. (2018). Even-dimensional rhotrix, Notes on Number Theory and Discrete Mathematics, 24 (2), 125–133.
- Isere, A. O. & Adeniran, J. O. (2018). The Concept of Rhotrix Quasigroups and Rhotrix Loops, The Journal of Nigerian Mathematical Society, 37(3), 139–153.
- Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract strutures, International Journal of Physical Sciences, 4 (9), 496–499.
- Mohammed, A. & Tella, Y. (2012). Rhotrix Sets and Rhotrix Spaces Category, International Journal of Mathematics and computational methods in Science and Technology, 2 (5), 2012.
- Mohammed, A., Balarabe, M. & Imam, A. T. (2012). Rhotrix Linear Transformation, Advances in Linear Algebra & Matrix Theory, 2, 43–47.
- Mohammed, A. (2014) A new expression for rhotrix, Advances in Linear Algebra & Matrix Theory, 4, 128–133.
- Sani, B. (2004). An alternative method for multiplication of rhotrices, International Journal of Mathematical Education in Science and Technology, 35, 777–781.
- Sani, B. (2007). The row-column multiplication for higher dimensional rhotrices, International Journal of Mathematical Education in Science and Technology, 38, 657–662.
- Sani, B. (2008). Conversion of a rhotrix to a coupled matrix, International Journal of Mathematical Education in Science and Technology, 39, 244–249.
- Tudunkaya, S. M. & Manjuola, S. O. (2010). Rhotrices and the Construction of Finite Fields, Bull. Pure Appl Sci. Sect, E. Math. Stat., 29 (2), 225–229.
- Usaini, S. & Mohammed, L. (2012). On the rhotrix eigenvalues and eigenvectors, Journal of the African Mathematical Union & Springer-Verlag, 25, 223–235.

## Related papers

- Mohammed, A., & Okon, U. E. (2016). On subgroups of non-commutative general rhotrix group. Notes on Number Theory and Discrete Mathematics, 22(2), 72-90.
- Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24(2), 125-133.
- Patil, K. M. (2021). Characterization of ideals of rhotrices over a ring and its applications. Notes on Number Theory and Discrete Mathematics, 27(1), 138-147.

## Cite this paper

APAIsere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206-219, doi: 10.7546/nntdm.2019.25.1.206-219.

ChicagoIsere, A. O. “Representation of Higher Even-dimensional Rhotrix.” Notes on Number Theory and Discrete Mathematics 25, no. 1 (2019): 206-219, doi: 10.7546/nntdm.2019.25.1.206-219.

MLAIsere, A. O. “Representation of Higher Even-dimensional Rhotrix.” Notes on Number Theory and Discrete Mathematics 25.1 (2019): 206-219. Print, doi: 10.7546/nntdm.2019.25.1.206-219.