Krassimir Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 19, 2013, Number 1, Pages 22–24
Full paper (PDF, 118 Kb)
Details
Authors and affiliations
Krassimir Atanassov ![]()
Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Abstract
The inequality φ(n)ψ(n)σ(n) ≥ n3 + n2 − n − 1. connecting φ, ψ and σ-functions is formulated and proved.
Keywords
- Arithmetic functions φ, ψ and σ
AMS Classification
- 11A25
References
- Mitrinovic, D., J. Sándor, Handbook of Number Theory, Kluwer Academic Publishers, 1996.
- Nagell, T., Introduction to Number Theory, John Wiley & Sons, New York, 1950.
Related papers
- Dimitrov, S. (2023). Lower bounds on expressions dependent on functions φ(n), ψ(n) and σ(n). Notes on Number Theory and Discrete Mathematics, 29(4), 713-716.
- Dimitrov, S. (2024). Lower bounds on expressions dependent on functions φ(n), ψ(n) and σ(n), II. Notes on Number Theory and Discrete Mathematics, 30(3), 547-556.
Cite this paper
Atanassov, K. (2013). Note on φ, ψ and σ-functions. Part 6. Notes on Number Theory and Discrete Mathematics, 19(1), 22-24.
