Elif Tan and Umut Öcal
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 4, Pages 635–646
DOI: 10.7546/nntdm.2023.29.4.635-646
Full paper (PDF, 199 Kb)
Details
Authors and affiliations
Elif Tan
![]()
Department of Mathematics, Ankara University
06100 Tandogan Ankara, Turkey
Umut Öcal ![]()
Department of Mathematics, Ankara University
06100 Tandogan Ankara, Turkey
Abstract
In this study, we introduce a new class of generalized quaternions whose components are dual-generalized complex Horadam numbers. We investigate some algebraic properties of them.
Keywords
- Dual-generalized complex numbers
- Quaternions, Fibonacci numbers
- Horadam numbers
- Fibonacci quaternions
2020 Mathematics Subject Classification
- 11B39
- 11R52
References
- Ait-Amrane, N. R., Gok, I., & Tan, E. (2021). Hyper-dual Horadam quaternions. Miskolc Mathematical Notes. 22(2), 903–913.
- Akyigit, M., Kosal, H. H., & Tosun, M. (2014). Fibonacci generalized quaternions.
Advances in Applied Clifford Algebras, 24, 631–641. - Alfsmann, D. (2006). On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing. 14th European Signal Processing Conference, Florence, Italy.
- Aslan, S., Bekar, M., & Yayli, Y. (2020). Hyper-dual split quaternions and rigid body motion. Journal of Geometry and Physics, 158, Article ID 103876.
- Catoni, F., Cannata, R., Catoni, V., & Zampetti, P. (2004). Two-dimensional hypercomplex numbers and related trigonometries and geometries. Advances in Applied Clifford Algebras, 14, 47–68.
- Cihan, A., Azak, A.Z., Gungor, M.A., & Tosun, M. (2019). A Study on Dual hyperbolic Fibonacci and Lucas numbers. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 27(1), 35–48.
- Clifford, W. K. (1873). Preliminary sketch of biquaternions. Proceedings of London Mathematical Society, 4, 361–395.
- Cockle, J. (1849). On a new imaginary in algebra. Philosophical Magazine, London–Dublin–Edinburgh, 3(34), 37–47.
- Cohen, A., & Shoham, M. (2018). Principle of transference–An extension to hyper-dual numbers. Mechanism and Machine Theory, 125, 101–110.
- Dickson, L. E. (1924). On the theory of numbers and generalized quaternions. American Journal of Mathematics, 46(1), 1–16.
- Fike, J. A. (2009). Numerically exact derivative calculations using hyper-dual numbers. 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design.
- Fike, J. A., & Alonso, J. J. (2011). The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerospace Sciences Meeting 28 including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7.
- Fjelstad, P., & Gal, S. G. (2001). Two-dimensional geometries, topologies, trigonometries, and physics generated by complex-type numbers. Advances in Applied Clifford Algebras, 11(1), 81–107.
- Griffiths, L. W. (1928). Generalized quaternion algebras and the theory of numbers. American Journal of Mathematics, 50(2), 303–314.
- Gungor, M. A., & Azak, A. Z. (2017). Investigation of dual-complex Fibonacci,
dual-complex Lucas numbers and their properties. Advances in Applied Clifford Algebras, 27, 3083–3096. - Gurses, N., Senturk, G. Y., & Yuce, S. (2021). A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi University Journal of Science, 34(1), 180–194.
- Halici, S., & Karatas, A. (2017). On a generalization for quaternion sequences. Chaos, Solitons and Fractals, 98, 178–182.
- Hamilton, W. R. (1853). Lectures on Quaternions. Hodges and Smith, Dublin.
- Harkin, A. A., & Harkin, J. B. (2004). Geometry of generalized complex numbers.
Mathematics Magazine, 77(2), 118–129. - Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly, 70, 289–291.
- Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, 3(3), 161-176.
- Jafari, M., & Yaylı, Y. (2015). Generalized quaternions and their algebraic properties. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 64(1), 5–27.
- Kantor, I., & Solodovnikov, A. (1989). Hypercomplex Numbers. Springer-Verlag, New York.
- Lie, S., & Scheffers G. (1893). Vorlesungen uber continuerliche Gruppen, Kap. 21, Taubner, Leipzig.
- Majernik, V. (1996). Multicomponent number systems. Acta Physica Polonica Series A, 90, 491–498.
- Messelmi, F. (2015). Dual-complex numbers and their holomorphic functions. https://hal.archives-ouvertes.fr/hal-01114178.
- Motter, A. E., & Rosa, A. F. (1998). Hyperbolic calculus. Advances in Applied Clifford Algebras, 8(1), 109–128.
- Nurkan, S. K., & Guven, I. A. (2015). Dual Fibonacci quaternions. Advances in Applied Clifford Algebras, 25(2), 403–414.
- Pottman, H., & Wallner, J. (2000). Computational Line Geometry. Springer-Verlag Berlin Heidelberg New York.
- Prasad, B. (2021). Dual complex Fibonacci p-numbers. Chaos, Solitons and Fractals, 145, Article ID 109922.
- Senturk, G. Y., Gurses, N., & Yuce, S. (2022). Construction of dual-generalized complex Fibonacci and Lucas quaternions. Carpathian Mathematical Publications, 14(2), 406–418.
- Senturk, T. D., Dasdemir, A., Bilgici, G., & Unal, Z. (2019). On unrestricted Horadam generalized quaternions. Utilitas Mathematica, 110, 89-98.
- Tan, E. (2017). Some properties of the bi-periodic Horadam sequences. Notes on Number Theory and Discrete Mathematics, 23(4), 56–65.
- Tan, E., Dagli, M., & Belkhir, A. (2023). Bi-periodic incomplete Horadam numbers. Turkish Journal of Mathematics, 47(2), 554–564.
- Tan, E., & Leung, H. H. (2020). Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences. Advances in Difference Equations, 2020(26).
- Tan, E., & Leung, H. H. (2020). Some results on Horadam quaternions. Chaos, Solitons and Fractals, 138, Article ID 109961.
- Yaglom, I. M. (1968). Complex Numbers in Geometry. Academic Press, New York.
Manuscript history
- Received: 3 February 2023
- Revised: 20 August 2023
- Accepted: 12 September 2023
- Online First: 13 September 2023
Copyright information
Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Tan, E. (2017). Some properties of the bi-periodic Horadam sequences. Notes on Number Theory and Discrete Mathematics, 23(4), 56–65.
Cite this paper
Tan, E., & Öcal, U. (2023). On a generalization of dual-generalized complex Fibonacci quaternions. Notes on Number Theory and Discrete Mathematics, 29(4), 635-646, DOI: 10.7546/nntdm.2023.29.4.635-646.
