Elif Tan

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 4, Pages 56—65

**Download full paper: PDF, 168 Kb**

## Details

### Authors and affiliations

Elif Tan

*Department of Bioinformatics and Mathematical Modelling
Department of Mathematics, Ankara University
Ankara, Turkey
*

### Abstract

In this paper, we give some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences. Also, we obtain some new identities for the bi-periodic Lucas sequences.

### Keywords

- Horadam sequence
- Conditional sequence
- Bi-periodic Fibonacci sequence

### AMS Classification

- 11B39
- 05A15

### References

- Bilgici, G. (2014) Two generalizations of Lucas sequence. Appl. Math. Comput., 245, 526–538.
- Edson, M., Lewis, S. & Yayenie, O. (2011) The k-Periodic Fibonacci Sequence and an Extended Binet’s Formula, Integers, 11, 739–751.
- Edson, M. & Yayenie, O. (2009) A new generalizations of Fibonacci sequences and extended Binet’s Formula, Integers, 9, 639–654.
- Horadam, A. F. (1965) Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quart., 3(3), 161–176.
- Panario, D., Sahin, M. &Wang, Q. (2011) A family of Fibonacci-like conditional sequences, Integers, 13 (2013), (A78).
- Sahin, M. (2011) The Gelin–Cesaro identity in some conditional sequences, Hacet. J. Math. Stat., 40(6), 855–861.
- Tan, E. & Ekin, A. B. (2014) On convergence properties of Fibonacci-like conditional sequences. Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 63(2), 119–127.
- Tan, E. & Ekin, A. B. (2017) Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes, 18(1), 469–477.
- Tan, E. & Ekin, A. B. (2015) Bi-Periodic Incomplete Lucas Sequences. Ars Combinatoria, 123, 371–380.
- Yayenie, O. (2011) A note on generalized Fibonacci sequence, Appl. Math. Comput., 217, 5603–5611.

## Related papers

## Cite this paper

Tan, E. (2017). Some Properties of the Bi-periodic Horadam Sequences. Notes on Number Theory and Discrete Mathematics, 23(4), 56-65.