Some properties of the bi-periodic Horadam sequences

Elif Tan
Department of Mathematics, Ankara University
Ankara, Turkey
e-mail: etan@ankara.edu.tr

Received: 15 December 2016
Accepted: 29 October 2017

Abstract

In this paper, we give some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences. Also, we obtain some new identities for the bi-periodic Lucas sequences.

Keywords: Horadam sequence, Conditional sequence, Bi-periodic Fibonacci sequence.
AMS Classification: 11B39, 05A15.

1 Introduction

The Horadam sequence $\left\{W_{n}\right\}$ is defined by Horadam [4] as:

$$
\begin{equation*}
W_{n}=p W_{n-1}-q W_{n-2}, \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

with initial conditions W_{0}, W_{1} where W_{0}, W_{1}, p, q are arbitrary integers. It has considered a generalization of the Fibonacci and Lucas sequences. In particular, if we take $q=-1, W_{0}=$ $0, W_{1}=1$ we obtain the generalized Fibonacci sequence $\left\{u_{n}\right\}$ and if we take $q=-1, W_{0}=$ $2, W_{1}=p$ we obtain the generalized Lucas sequence $\left\{v_{n}\right\}$.

Another generalization of the Fibonacci and Lucas sequence, named as the bi-periodic Fibonacci sequence $\left\{q_{n}\right\}$ is defined by

$$
q_{n}=\left\{\begin{array}{ll}
a q_{n-1}+q_{n-2}, & \text { if } n \text { is even } \tag{1.2}\\
b q_{n-1}+q_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial values $q_{0}=0, q_{1}=1$ and a, b are nonzero numbers (see [3]) and the bi-periodic Lucas sequence $\left\{p_{n}\right\}$ is defined by

$$
p_{n}=\left\{\begin{array}{ll}
b p_{n-1}+p_{n-2}, & \text { if } n \text { is even } \tag{1.3}\\
a p_{n-1}+p_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with the initial conditions $p_{0}=2, p_{1}=a$ (see [1]). If we take $a=b=1$ in $\left\{q_{n}\right\}$, we get the classical Fibonacci sequence and if we take $a=b=1$ in $\left\{p_{n}\right\}$, we get the classical Lucas sequence. The Binet formulas of the sequences $\left\{q_{n}\right\}$ and $\left\{p_{n}\right\}$ are given by

$$
\begin{equation*}
q_{n}=\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n}=\frac{a^{\zeta(n)}}{(a b)^{\left\lfloor\frac{n+1}{2}\right\rfloor}}\left(\alpha^{n}+\beta^{n}\right) \tag{1.5}
\end{equation*}
$$

respectively, where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$ that is, α and β are the roots of the polynomial $x^{2}-a b x-a b$ and $\zeta(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor$ is the parity function, i.e., $\zeta(n)=0$ when n is even and $\zeta(n)=1$ when n is odd. Let $a^{2} b^{2}+4 a b \neq 0$. Note that $\alpha+\beta=a b, \alpha-\beta=\sqrt{a^{2} b^{2}+4 a b}$ and $\alpha \beta=-a b$.

A further generalization introduced by Sahin [6] as a Fibonacci conditional sequence $\left\{f_{n}\right\}$:

$$
f_{n}=\left\{\begin{array}{ll}
a f_{n-1}+c f_{n-2}, & \text { if } n \text { is even } \tag{1.6}\\
b f_{n-1}+d f_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial conditions $f_{0}=0, f_{1}=1$ where a, b, c, d are nonzero numbers. By taking initial conditions 2 and b, authors gave some properties of the Lucas conditional sequence $\left\{l_{n}\right\}$ in [8]. It should be noted that more general case of these sequences can be found in [5] and more results related to these sequences we refer to $[1,2,5-10]$.

In this paper, we consider the sequence $\left\{w_{n}\right\}$ which is defined first in [3] as:

$$
w_{n}=\left\{\begin{array}{ll}
a w_{n-1}+w_{n-2}, & \text { if } n \text { is even } \tag{1.7}\\
b w_{n-1}+w_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with arbitrary initial conditions w_{0}, w_{1} where w_{0}, w_{1}, a, b are nonzero numbers. Here we call the sequence $\left\{w_{n}\right\}$, the bi-periodic Horadam sequence. Motivating by Horadam's results in [4], our aim is to obtain some basic properties of the bi-periodic Horadam sequence. Moreover, we give some new identities for the bi-periodic Lucas sequences by using these properties.

Some sequences in the literature can be stated in terms of the sequence $\left\{w_{n}\right\}$ as:

1. If we take $w_{0}=0, w_{1}=1$ in $\left\{w_{n}\right\}$, we get the bi-periodic Fibonacci sequence $\left\{q_{n}\right\}$ in [3].
2. If we take $w_{0}=2, w_{1}=b$ in $\left\{w_{n}\right\}$, we get the Lucas conditional sequence $\left\{l_{n}\right\}$ in [8] with the case of $c=d=1$. If we replace a and b in $\left\{l_{n}\right\}$, we get the bi-periodic Lucas sequence $\left\{p_{n}\right\}$ in [1]. Thus we have the fact

$$
\begin{equation*}
l_{n}=\left(\frac{b}{a}\right)^{\zeta(n)} p_{n} \tag{1.8}
\end{equation*}
$$

Note that the above equality gives the relation between the sequences $\left\{l_{n}\right\}$ and $\left\{p_{n}\right\}$. We will use this fact for further results.
3. If we take $a=b=p$ and $w_{0}=0, w_{1}=1$ in $\left\{w_{n}\right\}$, we get the generalized Fibonacci sequence $\left\{u_{n}\right\}$.
4. If we take $a=b=p$ and $w_{0}=2, w_{1}=p$ in $\left\{w_{n}\right\}$, we get the generalized Lucas sequence $\left\{v_{n}\right\}$.

2 Main results

In this section, we give some basic properties of the bi-periodic Horadam sequences. To obtain these properties, we use the Binet formula of $\left\{w_{n}\right\}$ which can be obtained by using the following result in [3, Theorem 8]. This result gives the relation between the sequences $\left\{w_{n}\right\}$ and $\left\{q_{n}\right\}$.

Lemma 1. [3, Theorem 8] For $n>0$, we have

$$
\begin{equation*}
w_{n}=q_{n} w_{1}+\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} w_{0} \tag{2.1}
\end{equation*}
$$

Now, by using Lemma 1 and the Binet formula of $\left\{q_{n}\right\}$ in (1.4), we can easily obtain the Binet formula for the sequence $\left\{w_{n}\right\}$.

Theorem 1. (Binet Formula) For $n>0$, we have

$$
\begin{equation*}
w_{n}=\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(A \alpha^{n-1}-B \beta^{n-1}\right), \tag{2.2}
\end{equation*}
$$

where $A:=\left(\frac{\alpha w_{1}+b w_{0}}{\alpha-\beta}\right)$ and $B:=\left(\frac{\beta w_{1}+b w_{0}}{\alpha-\beta}\right)$.
Proof. By using Lemma 1 and (1.4), we get

$$
\begin{aligned}
w_{n} & =q_{n} w_{1}+\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} w_{0} \\
& =\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) w_{1}+\left(\frac{b}{a}\right)^{\zeta(n)} \frac{a^{\zeta(n)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right) w_{0} \\
& =\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} w_{1}+b \frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta} w_{0}\right) \\
& =\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}\left(\alpha w_{1}+b w_{0}\right)-\beta^{n-1}\left(\beta w_{1}+b w_{0}\right)}{\alpha-\beta}\right) \\
& =\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(A \alpha^{n-1}-B \beta^{n-1}\right)
\end{aligned}
$$

Another relation between the sequences $\left\{w_{n}\right\}$ and $\left\{q_{n}\right\}$ can be given in the following theorem.

Theorem 2. For $n>0$, we have

$$
w_{n+1} q_{n}-w_{n} q_{n+1}=(-1)^{n+1} w_{0} .
$$

Proof. By using Lemma 1, we have

$$
\begin{aligned}
w_{n+1} q_{n}-w_{n} q_{n+1}= & \left(q_{n+1} w_{1}+\left(\frac{b}{a}\right)^{\zeta(n+1)} q_{n} w_{0}\right) q_{n} \\
& -\left(q_{n} w_{1}+\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} w_{0}\right) q_{n+1} \\
= & \left(q_{n+1} q_{n}-q_{n} q_{n+1}\right) w_{1} \\
& +\left(\left(\frac{b}{a}\right)^{\zeta(n+1)} q_{n}^{2}-\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1}\right) w_{0} \\
= & \left(\left(\frac{b}{a}\right)^{1-\zeta(n)} q_{n}^{2}-\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1}\right) w_{0} \\
= & \left(\left(\frac{a}{b}\right)^{\zeta(n)} \frac{b}{a} q_{n}^{2}-\left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1}\right) w_{0} \\
= & \left(a^{\zeta(n)} b^{-\zeta(n)} \frac{b}{a} q_{n}^{2}-a^{-\zeta(n)} b^{\zeta(n)} q_{n-1} q_{n+1}\right) w_{0} .
\end{aligned}
$$

By using the Cassini's identity for the sequence $\left\{q_{n}\right\}$

$$
a^{\zeta(n)} b^{1-\zeta(n)} q_{n}^{2}-a^{1-\zeta(n)} b^{\zeta(n)} q_{n-1} q_{n+1}=a(-1)^{n+1}
$$

which is given in [3, Theorem 3], we get the desired result.
Note that if we take $w_{0}=2$ and $w_{1}=b$, then by using the fact (1.8), the above theorem reduces the identity

$$
\left(\frac{b}{a}\right)^{\zeta(n+1)} p_{n+1} q_{n}-\left(\frac{b}{a}\right)^{\zeta(n)} p_{n} q_{n+1}=2(-1)^{n+1},
$$

which can be found in [1, Corallary 3].
Now, we state the Cassini's identity for the bi-periodic Horadam sequences. Since the Cassini's identity is a special case of the Catalan's identity, we only prove the Catalan's identity.

Theorem 3. (Cassini's identity) For any nonnegative integer n, we have

$$
a^{1-\zeta(n)} b^{\zeta(n)} w_{n-1} w_{n+1}-a^{\zeta(n)} b^{1-\zeta(n)} w_{n}^{2}=(-1)^{n}\left[a w_{1}^{2}-(a b) w_{0} w_{1}-b w_{0}^{2}\right] .
$$

Theorem 4. (Catalan's identity) For any nonnegative integer n, we have

$$
\begin{aligned}
& a^{\zeta(n-r)} b^{1-\zeta(n-r)} w_{n-r} w_{n+r}-a^{\zeta(n)} b^{1-\zeta(n)} w_{n}^{2} \\
= & (-1)^{n-r+1} \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}(a b+4)}\left[a w_{1}^{2}-(a b) w_{0} w_{1}-b w_{0}^{2}\right] .
\end{aligned}
$$

Proof. By using the Binet formula of $\left\{w_{n}\right\}$, we have

$$
\begin{aligned}
& w_{n-r} w_{n+r}-w_{n}^{2} \\
= & \frac{a^{\zeta(n-r+1)+\zeta(n+r+1)}}{(a b)^{\left\lfloor\frac{n-r}{2}\right\rfloor+\left\lfloor\frac{n+r}{2}\right\rfloor}}\left(A \alpha^{n-r-1}-B \beta^{n-r-1}\right) A \alpha^{n+r-1}-B \beta \\
& -\frac{a^{2 \zeta(n+1)}}{(a b)^{2\left\lfloor\frac{n}{2}\right\rfloor}}\left(A \alpha^{n-1}-B \beta^{n-1}\right)^{2} \\
= & \frac{a^{2 \zeta(n-r-1)}}{(a b)^{\left\lfloor\frac{n-r}{2}\right\rfloor+\left\lfloor\frac{n+r}{2}\right\rfloor}}\left(A^{2} \alpha^{2 n-2}-A B\left(\alpha^{n-r-1} \beta^{n+r-1}+\beta^{n-r-1} \alpha^{n+r-1}\right)+B^{2} \beta^{2 n-2}\right) \\
& -\frac{a^{2 \zeta(n+1)}}{(a b)^{2\left\lfloor\frac{n}{2}\right\rfloor}}\left(A^{2} \alpha^{2 n-2}-2 A B\left(\alpha^{n-1} \beta^{n-1}\right)+B^{2} \beta^{2 n-2}\right) \\
= & \frac{a^{2 \zeta(n-r-1)}}{(a b)^{n-\zeta(n-r)}}\left(A^{2} \alpha^{2 n-2}-A B\left(\alpha^{n-r-1} \beta^{n+r-1}+\beta^{n-r-1} \alpha^{n+r-1}\right)+B^{2} \beta^{2 n-2}\right) \\
& -\frac{a^{2 \zeta(n+1)}}{(a b)^{n-\zeta(n)}}\left(A^{2} \alpha^{2 n-2}-2 A B\left(\alpha^{n-1} \beta^{n-1}\right)+B^{2} \beta^{2 n-2}\right) \\
= & \frac{1}{(a b)^{n}}\left[a^{1+\zeta(n-r+1)} b^{\zeta(n-r)}\left(A^{2} \alpha^{2 n-2}-A B\left(\alpha^{n-r-1} \beta^{n+r-1}+\beta^{n-r-1} \alpha^{n+r-1}\right)+B^{2} \beta^{2 n-2}\right)\right. \\
& \left.-a^{1+\zeta(n+1)} b^{\zeta(n)}\left(A^{2} \alpha^{2 n-2}-2 A B\left(\alpha^{n-1} \beta^{n-1}\right)+B^{2} \beta^{2 n-2}\right)\right] .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& a^{1-\zeta(n-r+1)} b^{1-\zeta(n-r)} w_{n-r} w_{n+r}-a^{\zeta(n)} b^{1-\zeta(n)} w_{n}^{2} \\
& =\frac{a^{2} b}{(a b)^{n}}\left[-A B\left(\left(\frac{\alpha}{\beta}\right)^{-r}(\alpha \beta)^{n-1}+\left(\frac{\alpha}{\beta}\right)^{r}(\alpha \beta)^{n-1}\right)+2 A B(\alpha \beta)^{n-1}\right] \\
& =\frac{a^{2} b}{(a b)^{n}}(\alpha \beta)^{n-1}\left[-A B\left(\left(\frac{\alpha}{\beta}\right)^{-r}+\left(\frac{\alpha}{\beta}\right)^{r}-2\right)\right] \\
& =(-1)^{n-r} a \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}} A B .
\end{aligned}
$$

By using the definition of A and B in (2.2), we get

$$
\begin{aligned}
(-1)^{n-r} a \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}} A B & =(-1)^{n-r} a \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}}\left(\frac{\alpha w_{1}+b w_{0}}{\alpha-\beta}\right)\left(\frac{\beta w_{1}+b w_{0}}{\alpha-\beta}\right) \\
& =(-1)^{n-r} a \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}} \frac{(-a b) w_{1}^{2}+b(a b) w_{0} w_{1}+b^{2} w_{0}^{2}}{a b(a b+4)} \\
& =(-1)^{n-r+1} \frac{\left(\alpha^{r}-\beta^{r}\right)^{2}}{(a b)^{r}(a b+4)}\left[a w_{1}^{2}-(a b) w_{0} w_{1}-b w_{0}^{2}\right]
\end{aligned}
$$

Note that if we take $r=1$ in the above theorem, we obtain the Cassini's identity for the bi-periodic Horadam sequences.

- If we take $w_{0}=0$ and $w_{1}=1$ in the above theorem, we get the Catalan's identity for $\left\{q_{n}\right\}$

$$
a^{\zeta(n-r)} b^{1-\zeta(n-r)} q_{n-r} q_{n+r}-a^{\zeta(n)} b^{1-\zeta(n)} q_{n}^{2}=(-1)^{n+1-r} a^{\zeta(r)} b^{1-\zeta(r)} q_{r}^{2}
$$

in [3, Theorem 4].

- If we take $w_{0}=2$ and $w_{1}=b$ then by using the fact (1.8), we get the identity

$$
\left(\frac{b}{a}\right)^{\zeta(n+r)} p_{n-r} p_{n+r}-\left(\frac{b}{a}\right)^{\zeta(n)} p_{n}^{2}=\frac{(-1)^{n+r}}{(a b)^{r}}\left(\alpha^{r}-\beta^{r}\right)^{2}
$$

in [1, Theorem 4].
The following theorem gives the d'Ocagne's identity for the bi-periodic Horadam sequences $\left\{w_{n}\right\}$. It can be proven similarly by using the Binet formula of $\left\{w_{n}\right\}$. Note that if we consider the case $w_{0}=2$ and $w_{1}=b$, we get a new identity for the bi-periodic Lucas sequences.

Theorem 5. (d'Ocagne's identity) For any nonnegative integer n, we have

$$
\begin{aligned}
& a^{\zeta(m n+m)} b^{\zeta(m n+n)} w_{m} w_{n+1}-a^{\zeta(m n+n)} b^{\zeta(m n+m)} w_{m+1} w_{n} \\
= & (-1)^{n} a^{\zeta(m-n)-1} q_{m-n}\left[a w_{1}^{2}-(a b) w_{0} w_{1}-b w_{0}^{2}\right] .
\end{aligned}
$$

- If we take $w_{0}=0$ and $w_{1}=1$ in the above theorem, we get the d'Ocagne's identity for $\left\{q_{n}\right\}$

$$
a^{\zeta(m n+m)} b^{\zeta(m n+n)} q_{m} q_{n+1}-a^{\zeta(m n+n)} b^{\zeta(m n+m)} q_{m+1} q_{n}=(-1)^{n} a^{\zeta(m-n)} q_{m-n}
$$

in [3, Theorem 5].

- If we take $w_{0}=2$ and $w_{1}=b$, then by using the fact (1.8), we get

$$
\begin{align*}
& a^{\zeta(m n+n)} b^{\zeta(m n+m)} p_{m} p_{n+1}-a^{\zeta(m n+m)} b^{\zeta(m n+n)} p_{m+1} p_{n} \\
= & (-1)^{n+1} a^{\zeta(m-n)}(a b+4) q_{m-n} \\
= & (-1)^{n+1} a^{\zeta(m-n)}\left(p_{m-n-1}+p_{m-n+1}\right) \tag{2.3}
\end{align*}
$$

which is a new identity for $\left\{p_{n}\right\}$.
Finally, we state two binomial formula for the bi-periodic Horadam numbers. As a consequence of the following theorem, we can obtain a new identity for the bi-periodic Lucas numbers.

Theorem 6. (Generalized Catalan's identity) For any nonnegative integer n, we have

$$
\begin{aligned}
w_{n}= & \frac{a^{\zeta(n+1)}}{2^{n-1}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\left(a b w_{1}+2 b w_{0}\right) \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-k-2}(a b+4)^{k}\right. \\
& \left.+w_{1} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-k-1}(a b+4)^{k}\right) .
\end{aligned}
$$

Proof. By using the Binet formula of $\left\{w_{n}\right\}$ and the Binomial expansion formula, we have

$$
\begin{aligned}
& \frac{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}{a^{\zeta(n+1)}} w_{n}=A \alpha^{n-1}-B \beta^{n-1} \\
& =A\left(\frac{a b+\sqrt{\Delta}}{2}\right)^{n-1}-B\left(\frac{a b-\sqrt{\Delta}}{2}\right)^{n-1} \\
& =\frac{1}{2^{n-1}}\left(A \sum_{k=0}^{n-1}\binom{n-1}{k}(a b)^{n-k-1}(\sqrt{\Delta})^{k}\right. \\
& \left.-B \sum_{k=0}^{n-1}\binom{n-1}{k}(a b)^{n-k-1}(-\sqrt{\Delta})^{k}\right) \\
& =\frac{1}{2^{n-1}}\left((A+B) \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-2 k-2} \Delta^{k+\frac{1}{2}}\right. \\
& \left.+(A-B) \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-2 k-1} \Delta^{k}\right) \\
& =\frac{1}{2^{n-1}}\left(\left(\frac{(\alpha+\beta) w_{1}+2 b w_{0}}{\alpha-\beta}\right) \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-2 k-2} \Delta^{k+\frac{1}{2}}\right. \\
& \left.+w_{1} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-2 k-1} \Delta^{k}\right) \\
& =\frac{1}{2^{n-1}}\left(\left(a b w_{1}+2 b w_{0}\right) \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-k-2}(a b+4)^{k}\right. \\
& \left.+w_{1} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-k-1}(a b+4)^{k}\right) .
\end{aligned}
$$

Thus, we obtain the desired result.

- If we take $a=b=1$, we obtain the result in [4, identity (3.20)] for the classical Horadam sequence.
- If we take $w_{0}=0$ and $w_{1}=1$ we get

$$
\begin{aligned}
2^{n-1} \frac{(a b)\left\lfloor\frac{n}{2}\right\rfloor}{a^{\zeta(n+1)}} w_{n}= & \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-k-1}(a b+4)^{k} \\
& +\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-k-1}(a b+4)^{k} \\
= & \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(\binom{n-1}{2 k+1}+\binom{n-1}{2 k}\right)(a b)^{n-k-1}(a b+4)^{k} \\
= & \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 k+1}(a b)^{n-k-1}(a b+4)^{k} .
\end{aligned}
$$

Thus, we have

$$
q_{n}=\frac{a^{\zeta(n+1)}}{2^{n-1}} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 k+1}(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-k}(a b+4)^{k},
$$

which reduces the generalized Catalan's identity in [10, Theorem 5].

- If we take $w_{0}=2$ and $w_{1}=b$ we get

$$
\begin{aligned}
2^{n-1} \frac{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}{b a^{\zeta(n+1)}} w_{n}= & \sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 k+1}(a b)^{n-k-2}(a b+4)^{k+1} \\
& +\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-k-1}(a b+4)^{k} \\
= & \sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{2 k-1}(a b)^{n-k-1}(a b+4)^{k} \\
& +\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1}{2 k}(a b)^{n-k-1}(a b+4)^{k} \\
= & \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\binom{n-1}{2 k-1}+\binom{n-1}{2 k}\right)(a b)^{n-k-1}(a b+4)^{k} \\
= & \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}(a b)^{n-k-1}(a b+4)^{k} .
\end{aligned}
$$

Then by using the fact (1.8), we obtain

$$
\begin{equation*}
p_{n}=\frac{a^{\zeta(n)}}{2^{n-1}} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k}(a b+4)^{k}, \tag{2.4}
\end{equation*}
$$

which is a new identity for the bi-periodic Lucas sequences.

Theorem 7. (General Binomial Sum Formula) For any nonnegative integer n, we have

$$
\sum_{k=0}^{n}\binom{n}{k} a^{\zeta(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\zeta(k) \zeta(r)} w_{k+r}=a^{\zeta(r)} w_{2 n+r}
$$

Proof. By using the Binet formula of $\left\{w_{n}\right\}$, we obtain

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} a^{\zeta(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\zeta(k) \zeta(r)} w_{k+r} \\
&= \sum_{k=0}^{n}\binom{n}{k} a^{\zeta(k+r)+\zeta(k+r+1)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\zeta(k) \zeta(r)-\left\lfloor\frac{k+r}{2}\right\rfloor}\left(A \alpha^{k+r-1}-B \beta^{k+r-1}\right) \\
&= a(a b)^{\frac{\zeta(r)-r}{2}}\left[A \alpha^{r-1} \sum_{k=0}^{n}\binom{n}{k} \alpha^{k}-B \beta^{r-1} \sum_{k=0}^{n}\binom{n}{k} \beta^{k}\right] \\
&= a(a b)^{\frac{\zeta(r)-r}{2}}\left[A \alpha^{r-1}(1+\alpha)^{n}-B \beta^{r-1}(1+\beta)^{n}\right] \\
&= a(a b)^{\frac{\zeta(r)-r}{2}}\left[A \alpha^{r-1}\left(\frac{\alpha^{2}}{a b}\right)^{n}-B \beta^{r-1}\left(\frac{\beta^{2}}{a b}\right)^{n}\right] \\
&= a(a b)^{\frac{\zeta(r)-r-2 n}{2}}\left(A \alpha^{2 n+r-1}-B \beta^{2 n+r-1}\right) \\
&= a^{1-\zeta(2 n+r+1)}(a b)^{\frac{\zeta(r)-r-2 n}{2}}+\left\lfloor\frac{2 n+r}{2}\right\rfloor \\
& w_{2 n+r} \\
&= a^{\zeta(r)} w_{2 n+r} .
\end{aligned}
$$

- If we take $w_{0}=0$ and $w_{1}=1$, we obtain the identity

$$
\sum_{k=0}^{n}\binom{n}{k} a^{\zeta(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\zeta(k) \zeta(r)} q_{k+r}=a^{\zeta(r)} q_{2 n+r}
$$

which can be found in [3, Remark 1].

- If we take $w_{0}=2$ and $w_{1}=b$ then by using the fact (1.8), we obtain the identity

$$
\sum_{k=0}^{n}\binom{n}{k} b^{\zeta(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\zeta(k) \zeta(r)} p_{k+r}=b^{\zeta(r)} p_{2 n+r}
$$

which can be found in [1, Theorem 7].

3 Conclusion

In this paper, we considered the bi-periodic Horadam sequences $\left\{w_{n}\right\}$, which is defined by the recurrence $w_{n}=a w_{n-1}+w_{n-2}$, if n is even, $w_{n}=b w_{n-1}+w_{n-2}$, if n is odd with arbitrary initial conditions w_{0}, w_{1} and nonzero numbers a, b. Motivated by Horadam's results in [4], we gave some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences in [3] and [1]. Moreover, we derived some new identities for the bi-periodic Lucas sequences.

References

[1] Bilgici, G. (2014) Two generalizations of Lucas sequence. Appl. Math. Comput., 245, 526-538.
[2] Edson, M., Lewis, S. \& Yayenie, O. (2011) The k-Periodic Fibonacci Sequence and an Extended Binet's Formula, Integers, 11, 739-751.
[3] Edson, M. \& Yayenie, O. (2009) A new generalizations of Fibonacci sequences and extended Binet's Formula, Integers, 9, 639-654.
[4] Horadam, A. F. (1965) Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quart., 3(3), 161-176.
[5] Panario, D., Sahin, M. \& Wang, Q. (2011) A family of Fibonacci-like conditional sequences, Integers, 13 (2013), (A78).
[6] Sahin, M. (2011) The Gelin-Cesaro identity in some conditional sequences, Hacet. J. Math. Stat., 40(6), 855-861.
[7] Tan, E. \& Ekin, A. B. (2014) On convergence properties of Fibonacci-like conditional sequences. Commun. Fac. Sci. Univ. Ank. Sér. Al Math. Stat., 63(2), 119-127.
[8] Tan, E. \& Ekin, A. B. (2017) Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes, 18(1), 469-477.
[9] Tan, E. \& Ekin, A. B. (2015) Bi-Periodic Incomplete Lucas Sequences. Ars Combinatoria, 123, 371-380.
[10] Yayenie, O. (2011) A note on generalized Fibonacci sequence, Appl. Math. Comput., 217, 5603-5611.

