Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 4, 56–65

Some properties of the bi-periodic Horadam sequences

Elif Tan

Department of Mathematics, Ankara University Ankara, Turkey e-mail: etan@ankara.edu.tr

Received: 15 December 2016

Accepted: 29 October 2017

Abstract: In this paper, we give some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences. Also, we obtain some new identities for the bi-periodic Lucas sequences.

Keywords: Horadam sequence, Conditional sequence, Bi-periodic Fibonacci sequence. **AMS Classification:** 11B39, 05A15.

1 Introduction

The Horadam sequence $\{W_n\}$ is defined by Horadam [4] as:

$$W_n = pW_{n-1} - qW_{n-2}, \quad n \ge 2 \tag{1.1}$$

with initial conditions W_0, W_1 where W_0, W_1, p, q are arbitrary integers. It has considered a generalization of the Fibonacci and Lucas sequences. In particular, if we take $q = -1, W_0 = 0, W_1 = 1$ we obtain the generalized Fibonacci sequence $\{u_n\}$ and if we take $q = -1, W_0 = 2, W_1 = p$ we obtain the generalized Lucas sequence $\{v_n\}$.

Another generalization of the Fibonacci and Lucas sequence, named as the bi-periodic Fibonacci sequence $\{q_n\}$ is defined by

$$q_n = \begin{cases} aq_{n-1} + q_{n-2}, & \text{if } n \text{ is even} \\ bq_{n-1} + q_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2$$

$$(1.2)$$

with initial values $q_0 = 0$, $q_1 = 1$ and a, b are nonzero numbers (see [3]) and the bi-periodic Lucas sequence $\{p_n\}$ is defined by

$$p_n = \begin{cases} bp_{n-1} + p_{n-2}, & \text{if } n \text{ is even} \\ ap_{n-1} + p_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2$$

$$(1.3)$$

with the initial conditions $p_0 = 2$, $p_1 = a$ (see [1]). If we take a = b = 1 in $\{q_n\}$, we get the classical Fibonacci sequence and if we take a = b = 1 in $\{p_n\}$, we get the classical Lucas sequence. The Binet formulas of the sequences $\{q_n\}$ and $\{p_n\}$ are given by

$$q_n = \frac{a^{\zeta(n+1)}}{(ab)^{\left\lfloor\frac{n}{2}\right\rfloor}} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta}\right)$$
(1.4)

and

$$p_n = \frac{a^{\zeta(n)}}{(ab)^{\left\lfloor \frac{n+1}{2} \right\rfloor}} \left(\alpha^n + \beta^n \right), \tag{1.5}$$

respectively, where $\alpha = \frac{ab+\sqrt{a^2b^2+4ab}}{2}$ and $\beta = \frac{ab-\sqrt{a^2b^2+4ab}}{2}$ that is, α and β are the roots of the polynomial $x^2 - abx - ab$ and $\zeta(n) = n - 2\lfloor \frac{n}{2} \rfloor$ is the parity function, i.e., $\zeta(n) = 0$ when n is even and $\zeta(n) = 1$ when n is odd. Let $a^2b^2+4ab \neq 0$. Note that $\alpha+\beta = ab$, $\alpha-\beta = \sqrt{a^2b^2+4ab}$ and $\alpha\beta = -ab$.

A further generalization introduced by Sahin [6] as a Fibonacci conditional sequence $\{f_n\}$:

$$f_n = \begin{cases} af_{n-1} + cf_{n-2}, & \text{if } n \text{ is even} \\ bf_{n-1} + df_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2$$

$$(1.6)$$

with initial conditions $f_0 = 0$, $f_1 = 1$ where a, b, c, d are nonzero numbers. By taking initial conditions 2 and b, authors gave some properties of the Lucas conditional sequence $\{l_n\}$ in [8]. It should be noted that more general case of these sequences can be found in [5] and more results related to these sequences we refer to [1, 2, 5-10].

In this paper, we consider the sequence $\{w_n\}$ which is defined first in [3] as:

$$w_n = \begin{cases} aw_{n-1} + w_{n-2}, & \text{if } n \text{ is even} \\ bw_{n-1} + w_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2$$

$$(1.7)$$

with arbitrary initial conditions w_0, w_1 where w_0, w_1, a, b are nonzero numbers. Here we call the sequence $\{w_n\}$, the bi-periodic Horadam sequence. Motivating by Horadam's results in [4], our aim is to obtain some basic properties of the bi-periodic Horadam sequence. Moreover, we give some new identities for the bi-periodic Lucas sequences by using these properties.

Some sequences in the literature can be stated in terms of the sequence $\{w_n\}$ as:

- 1. If we take $w_0 = 0, w_1 = 1$ in $\{w_n\}$, we get the bi-periodic Fibonacci sequence $\{q_n\}$ in [3].
- 2. If we take $w_0 = 2, w_1 = b$ in $\{w_n\}$, we get the Lucas conditional sequence $\{l_n\}$ in [8] with the case of c = d = 1. If we replace a and b in $\{l_n\}$, we get the bi-periodic Lucas sequence $\{p_n\}$ in [1]. Thus we have the fact

$$l_n = \left(\frac{b}{a}\right)^{\zeta(n)} p_n. \tag{1.8}$$

Note that the above equality gives the relation between the sequences $\{l_n\}$ and $\{p_n\}$. We will use this fact for further results.

- 3. If we take a = b = p and $w_0 = 0, w_1 = 1$ in $\{w_n\}$, we get the generalized Fibonacci sequence $\{u_n\}$.
- 4. If we take a = b = p and $w_0 = 2$, $w_1 = p$ in $\{w_n\}$, we get the generalized Lucas sequence $\{v_n\}$.

2 Main results

In this section, we give some basic properties of the bi-periodic Horadam sequences. To obtain these properties, we use the Binet formula of $\{w_n\}$ which can be obtained by using the following result in [3, Theorem 8]. This result gives the relation between the sequences $\{w_n\}$ and $\{q_n\}$.

Lemma 1. [3, Theorem 8] For n > 0, we have

$$w_n = q_n w_1 + \left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} w_0.$$
 (2.1)

Now, by using Lemma 1 and the Binet formula of $\{q_n\}$ in (1.4), we can easily obtain the Binet formula for the sequence $\{w_n\}$.

Theorem 1. (*Binet Formula*) For n > 0, we have

$$w_n = \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(A \alpha^{n-1} - B \beta^{n-1} \right), \qquad (2.2)$$

where $A := \left(\frac{\alpha w_1 + b w_0}{\alpha - \beta}\right)$ and $B := \left(\frac{\beta w_1 + b w_0}{\alpha - \beta}\right)$.

Proof. By using Lemma 1 and (1.4), we get

$$w_{n} = q_{n}w_{1} + \left(\frac{b}{a}\right)^{\zeta(n)}q_{n-1}w_{0}$$

$$= \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor\frac{n}{2}\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)w_{1} + \left(\frac{b}{a}\right)^{\zeta(n)}\frac{a^{\zeta(n)}}{(ab)^{\lfloor\frac{n-1}{2}\rfloor}}\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right)w_{0}$$

$$= \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor\frac{n}{2}\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}w_{1}+b\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}w_{0}\right)$$

$$= \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor\frac{n}{2}\rfloor}}\left(\frac{\alpha^{n-1}(\alpha w_{1}+bw_{0})-\beta^{n-1}(\beta w_{1}+bw_{0})}{\alpha-\beta}\right)$$

$$= \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor\frac{n}{2}\rfloor}}\left(A\alpha^{n-1}-B\beta^{n-1}\right).$$

Another relation between the sequences $\{w_n\}$ and $\{q_n\}$ can be given in the following theorem.

Theorem 2. For n > 0, we have

$$w_{n+1}q_n - w_nq_{n+1} = (-1)^{n+1}w_0.$$

Proof. By using Lemma 1, we have

$$\begin{split} w_{n+1}q_n - w_n q_{n+1} &= \left(q_{n+1}w_1 + \left(\frac{b}{a}\right)^{\zeta(n+1)} q_n w_0 \right) q_n \\ &- \left(q_n w_1 + \left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} w_0 \right) q_{n+1} \\ &= \left(q_{n+1}q_n - q_n q_{n+1} \right) w_1 \\ &+ \left(\left(\frac{b}{a}\right)^{\zeta(n+1)} q_n^2 - \left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1} \right) w_0 \\ &= \left(\left(\frac{b}{a}\right)^{1-\zeta(n)} q_n^2 - \left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1} \right) w_0 \\ &= \left(\left(\frac{a}{b}\right)^{\zeta(n)} \frac{b}{a} q_n^2 - \left(\frac{b}{a}\right)^{\zeta(n)} q_{n-1} q_{n+1} \right) w_0 \\ &= \left(a^{\zeta(n)} b^{-\zeta(n)} \frac{b}{a} q_n^2 - a^{-\zeta(n)} b^{\zeta(n)} q_{n-1} q_{n+1} \right) w_0. \end{split}$$

By using the Cassini's identity for the sequence $\{q_n\}$

$$a^{\zeta(n)}b^{1-\zeta(n)}q_n^2 - a^{1-\zeta(n)}b^{\zeta(n)}q_{n-1}q_{n+1} = a\left(-1\right)^{n+1},$$

which is given in [3, Theorem 3], we get the desired result.

Note that if we take $w_0 = 2$ and $w_1 = b$, then by using the fact (1.8), the above theorem reduces the identity

$$\left(\frac{b}{a}\right)^{\zeta(n+1)} p_{n+1}q_n - \left(\frac{b}{a}\right)^{\zeta(n)} p_n q_{n+1} = 2\left(-1\right)^{n+1},$$

which can be found in [1, Corallary 3].

Now, we state the Cassini's identity for the bi-periodic Horadam sequences. Since the Cassini's identity is a special case of the Catalan's identity, we only prove the Catalan's identity.

Theorem 3. (*Cassini's identity*) For any nonnegative integer n, we have

$$a^{1-\zeta(n)}b^{\zeta(n)}w_{n-1}w_{n+1} - a^{\zeta(n)}b^{1-\zeta(n)}w_n^2 = (-1)^n \left[aw_1^2 - (ab)w_0w_1 - bw_0^2\right].$$

Theorem 4. (*Catalan's identity*) For any nonnegative integer n, we have

$$a^{\zeta(n-r)}b^{1-\zeta(n-r)}w_{n-r}w_{n+r} - a^{\zeta(n)}b^{1-\zeta(n)}w_n^2$$

= $(-1)^{n-r+1}\frac{(\alpha^r - \beta^r)^2}{(ab)^r(ab+4)} \left[aw_1^2 - (ab)w_0w_1 - bw_0^2\right].$

Proof. By using the Binet formula of $\{w_n\}$, we have

$$\begin{split} w_{n-r}w_{n+r} - w_{n}^{2} \\ &= \frac{a^{\zeta(n-r+1)+\zeta(n+r+1)}}{(ab)^{\lfloor \frac{n-r}{2} \rfloor} + \lfloor \frac{n+r}{2} \rfloor} \left(A\alpha^{n-r-1} - B\beta^{n-r-1}\right) A\alpha^{n+r-1} - B\beta \\ &\quad -\frac{a^{2\zeta(n+1)}}{(ab)^{2\lfloor \frac{n}{2} \rfloor}} \left(A\alpha^{n-1} - B\beta^{n-1}\right)^{2} \\ &= \frac{a^{2\zeta(n-r-1)}}{(ab)^{\lfloor \frac{n-r}{2} \rfloor} + \lfloor \frac{n+r}{2} \rfloor} \left(A^{2}\alpha^{2n-2} - AB\left(\alpha^{n-r-1}\beta^{n+r-1} + \beta^{n-r-1}\alpha^{n+r-1}\right) + B^{2}\beta^{2n-2}\right) \\ &\quad -\frac{a^{2\zeta(n+1)}}{(ab)^{2\lfloor \frac{n}{2} \rfloor}} \left(A^{2}\alpha^{2n-2} - 2AB\left(\alpha^{n-1}\beta^{n-1}\right) + B^{2}\beta^{2n-2}\right) \\ &= \frac{a^{2\zeta(n-r-1)}}{(ab)^{n-\zeta(n-r)}} \left(A^{2}\alpha^{2n-2} - AB\left(\alpha^{n-r-1}\beta^{n+r-1} + \beta^{n-r-1}\alpha^{n+r-1}\right) + B^{2}\beta^{2n-2}\right) \\ &\quad -\frac{a^{2\zeta(n+1)}}{(ab)^{n-\zeta(n)}} \left(A^{2}\alpha^{2n-2} - 2AB\left(\alpha^{n-1}\beta^{n-1}\right) + B^{2}\beta^{2n-2}\right) \\ &= \frac{1}{(ab)^{n}} \left[a^{1+\zeta(n-r+1)}b^{\zeta(n-r)} \left(A^{2}\alpha^{2n-2} - AB\left(\alpha^{n-r-1}\beta^{n+r-1} + \beta^{n-r-1}\alpha^{n+r-1}\right) + B^{2}\beta^{2n-2}\right) \\ &\quad -a^{1+\zeta(n+1)}b^{\zeta(n)} \left(A^{2}\alpha^{2n-2} - 2AB\left(\alpha^{n-1}\beta^{n-1}\right) + B^{2}\beta^{2n-2}\right)\right]. \end{split}$$

Therefore, we obtain

$$a^{1-\zeta(n-r+1)}b^{1-\zeta(n-r)}w_{n-r}w_{n+r} - a^{\zeta(n)}b^{1-\zeta(n)}w_n^2$$

$$= \frac{a^2b}{(ab)^n} \left[-AB\left(\left(\frac{\alpha}{\beta}\right)^{-r}(\alpha\beta)^{n-1} + \left(\frac{\alpha}{\beta}\right)^r(\alpha\beta)^{n-1}\right) + 2AB(\alpha\beta)^{n-1} \right]$$

$$= \frac{a^2b}{(ab)^n}(\alpha\beta)^{n-1} \left[-AB\left(\left(\frac{\alpha}{\beta}\right)^{-r} + \left(\frac{\alpha}{\beta}\right)^r - 2\right) \right]$$

$$= (-1)^{n-r}a\frac{(\alpha^r - \beta^r)^2}{(ab)^r}AB.$$

By using the definition of A and B in (2.2), we get

$$(-1)^{n-r} a \frac{(\alpha^r - \beta^r)^2}{(ab)^r} AB = (-1)^{n-r} a \frac{(\alpha^r - \beta^r)^2}{(ab)^r} \left(\frac{\alpha w_1 + bw_0}{\alpha - \beta}\right) \left(\frac{\beta w_1 + bw_0}{\alpha - \beta}\right)$$
$$= (-1)^{n-r} a \frac{(\alpha^r - \beta^r)^2}{(ab)^r} \frac{(-ab) w_1^2 + b (ab) w_0 w_1 + b^2 w_0^2}{ab (ab + 4)}$$
$$= (-1)^{n-r+1} \frac{(\alpha^r - \beta^r)^2}{(ab)^r (ab + 4)} \left[aw_1^2 - (ab) w_0 w_1 - bw_0^2\right].$$

Note that if we take r = 1 in the above theorem, we obtain the Cassini's identity for the bi-periodic Horadam sequences.

• If we take $w_0 = 0$ and $w_1 = 1$ in the above theorem, we get the Catalan's identity for $\{q_n\}$

$$a^{\zeta(n-r)}b^{1-\zeta(n-r)}q_{n-r}q_{n+r} - a^{\zeta(n)}b^{1-\zeta(n)}q_n^2 = (-1)^{n+1-r}a^{\zeta(r)}b^{1-\zeta(r)}q_r^2$$

in [3, Theorem 4].

• If we take $w_0 = 2$ and $w_1 = b$ then by using the fact (1.8), we get the identity

$$\left(\frac{b}{a}\right)^{\zeta(n+r)} p_{n-r}p_{n+r} - \left(\frac{b}{a}\right)^{\zeta(n)} p_n^2 = \frac{(-1)^{n+r}}{(ab)^r} \left(\alpha^r - \beta^r\right)^2$$

in [1, Theorem 4].

The following theorem gives the d'Ocagne's identity for the bi-periodic Horadam sequences $\{w_n\}$. It can be proven similarly by using the Binet formula of $\{w_n\}$. Note that if we consider the case $w_0 = 2$ and $w_1 = b$, we get a new identity for the bi-periodic Lucas sequences.

Theorem 5. (d'Ocagne's identity) For any nonnegative integer n, we have

$$a^{\zeta(mn+m)}b^{\zeta(mn+n)}w_{m}w_{n+1} - a^{\zeta(mn+n)}b^{\zeta(mn+m)}w_{m+1}w_{n}$$

= $(-1)^{n}a^{\zeta(m-n)-1}q_{m-n}\left[aw_{1}^{2} - (ab)w_{0}w_{1} - bw_{0}^{2}\right].$

• If we take $w_0 = 0$ and $w_1 = 1$ in the above theorem, we get the d'Ocagne's identity for $\{q_n\}$

$$a^{\zeta(mn+m)}b^{\zeta(mn+n)}q_mq_{n+1} - a^{\zeta(mn+n)}b^{\zeta(mn+m)}q_{m+1}q_n = (-1)^n a^{\zeta(m-n)}q_{m-n}$$

in [3, Theorem 5].

• If we take $w_0 = 2$ and $w_1 = b$, then by using the fact (1.8), we get

$$a^{\zeta(mn+n)}b^{\zeta(mn+m)}p_{m}p_{n+1} - a^{\zeta(mn+m)}b^{\zeta(mn+n)}p_{m+1}p_{n}$$

= $(-1)^{n+1}a^{\zeta(m-n)}(ab+4)q_{m-n}$
= $(-1)^{n+1}a^{\zeta(m-n)}(p_{m-n-1}+p_{m-n+1})$ (2.3)

which is a new identity for $\{p_n\}$.

Finally, we state two binomial formula for the bi-periodic Horadam numbers. As a consequence of the following theorem, we can obtain a new identity for the bi-periodic Lucas numbers.

Theorem 6. (Generalized Catalan's identity) For any nonnegative integer n, we have

$$w_{n} = \frac{a^{\zeta(n+1)}}{2^{n-1} (ab)^{\lfloor \frac{n}{2} \rfloor}} \left((abw_{1} + 2bw_{0}) \sum_{k=0}^{\lfloor \frac{n-2}{2} \rfloor} {\binom{n-1}{2k+1}} (ab)^{n-k-2} (ab+4)^{k} + w_{1} \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^{k} \right).$$

Proof. By using the Binet formula of $\{w_n\}$ and the Binomial expansion formula, we have

$$\begin{split} \frac{(ab)^{\left\lfloor \frac{n}{2} \right\rfloor}}{a^{\zeta(n+1)}} w_n &= A\alpha^{n-1} - B\beta^{n-1} \\ &= A\left(\frac{ab + \sqrt{\Delta}}{2}\right)^{n-1} - B\left(\frac{ab - \sqrt{\Delta}}{2}\right)^{n-1} \\ &= \frac{1}{2^{n-1}} \left(A\sum_{k=0}^{n-1} \binom{n-1}{k} (ab)^{n-k-1} \left(\sqrt{\Delta}\right)^k \\ &- B\sum_{k=0}^{n-1} \binom{n-1}{k} (ab)^{n-k-1} \left(-\sqrt{\Delta}\right)^k \right) \\ &= \frac{1}{2^{n-1}} \left((A + B)\sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} \binom{n-1}{2k+1} (ab)^{n-2k-2} \Delta^{k+\frac{1}{2}} \\ &+ (A - B)\sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n-1}{2k} (ab)^{n-2k-1} \Delta^k \right) \\ &= \frac{1}{2^{n-1}} \left(\left(\frac{(\alpha + \beta) w_1 + 2bw_0}{\alpha - \beta}\right)\sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} \binom{n-1}{2k+1} (ab)^{n-2k-2} \Delta^{k+\frac{1}{2}} \\ &+ w_1 \sum_{k=0}^{\left\lfloor \frac{n-1}{2k} \right\rfloor} (ab)^{n-2k-1} \Delta^k \right) \\ &= \frac{1}{2^{n-1}} \left((abw_1 + 2bw_0) \sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} \binom{n-1}{2k+1} (ab)^{n-k-2} (ab + 4)^k \\ &+ w_1 \sum_{k=0}^{\left\lfloor \frac{n-1}{2k} \right\rfloor} (ab)^{n-k-1} (ab + 4)^k \right). \end{split}$$

Thus, we obtain the desired result.

• If we take a = b = 1, we obtain the result in [4, identity (3.20)] for the classical Horadam sequence.

• If we take $w_0 = 0$ and $w_1 = 1$ we get

$$2^{n-1} \frac{(ab)^{\left\lfloor \frac{n}{2} \right\rfloor}}{a^{\zeta(n+1)}} w_n = \sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} {\binom{n-1}{2k+1}} (ab)^{n-k-1} (ab+4)^k + \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^k = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {\binom{n-1}{2k+1}} + {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^k = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {\binom{n}{2k+1}} (ab)^{n-k-1} (ab+4)^k.$$

Thus, we have

$$q_n = \frac{a^{\zeta(n+1)}}{2^{n-1}} \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2k+1}} (ab)^{\lfloor \frac{n-1}{2} \rfloor - k} (ab+4)^k,$$

which reduces the generalized Catalan's identity in [10, Theorem 5].

• If we take $w_0 = 2$ and $w_1 = b$ we get

$$2^{n-1} \frac{(ab)^{\left\lfloor \frac{n}{2} \right\rfloor}}{ba^{\zeta(n+1)}} w_n = \sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} {\binom{n-1}{2k+1}} (ab)^{n-k-2} (ab+4)^{k+1} \\ + \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^k \\ = \sum_{k=1}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n-1}{2k-1}} (ab)^{n-k-1} (ab+4)^k \\ + \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^k \\ = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n-1}{2k-1}} + {\binom{n-1}{2k}} (ab)^{n-k-1} (ab+4)^k \\ = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n}{2k}} (ab)^{n-k-1} (ab+4)^k .$$

Then by using the fact (1.8), we obtain

$$p_n = \frac{a^{\zeta(n)}}{2^{n-1}} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} (ab)^{\lfloor \frac{n}{2} \rfloor - k} (ab+4)^k, \qquad (2.4)$$

which is a new identity for the bi-periodic Lucas sequences.

Theorem 7. (General Binomial Sum Formula) For any nonnegative integer n, we have

$$\sum_{k=0}^{n} \binom{n}{k} a^{\zeta(k+r)} (ab)^{\left\lfloor \frac{k}{2} \right\rfloor + \zeta(k)\zeta(r)} w_{k+r} = a^{\zeta(r)} w_{2n+r}.$$

Proof. By using the Binet formula of $\{w_n\}$, we obtain

$$\sum_{k=0}^{n} \binom{n}{k} a^{\zeta(k+r)} (ab)^{\left\lfloor \frac{k}{2} \right\rfloor + \zeta(k)\zeta(r)} w_{k+r}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{\zeta(k+r) + \zeta(k+r+1)} (ab)^{\left\lfloor \frac{k}{2} \right\rfloor + \zeta(k)\zeta(r) - \left\lfloor \frac{k+r}{2} \right\rfloor} (A\alpha^{k+r-1} - B\beta^{k+r-1})$$

$$= a (ab)^{\frac{\zeta(r)-r}{2}} \left[A\alpha^{r-1} \sum_{k=0}^{n} \binom{n}{k} \alpha^{k} - B\beta^{r-1} \sum_{k=0}^{n} \binom{n}{k} \beta^{k} \right]$$

$$= a (ab)^{\frac{\zeta(r)-r}{2}} \left[A\alpha^{r-1} (1+\alpha)^{n} - B\beta^{r-1} (1+\beta)^{n} \right]$$

$$= a (ab)^{\frac{\zeta(r)-r}{2}} \left[A\alpha^{r-1} \left(\frac{\alpha^{2}}{ab} \right)^{n} - B\beta^{r-1} \left(\frac{\beta^{2}}{ab} \right)^{n} \right]$$

$$= a (ab)^{\frac{\zeta(r)-r-2n}{2}} (A\alpha^{2n+r-1} - B\beta^{2n+r-1})$$

$$= a^{1-\zeta(2n+r+1)} (ab)^{\frac{\zeta(r)-r-2n}{2} + \left\lfloor \frac{2n+r}{2} \right\rfloor} w_{2n+r}$$

$$= a^{\zeta(r)} w_{2n+r}.$$

• If we take $w_0 = 0$ and $w_1 = 1$, we obtain the identity

$$\sum_{k=0}^{n} \binom{n}{k} a^{\zeta(k+r)} (ab)^{\left\lfloor \frac{k}{2} \right\rfloor + \zeta(k)\zeta(r)} q_{k+r} = a^{\zeta(r)} q_{2n+r},$$

which can be found in [3, Remark 1].

• If we take $w_0 = 2$ and $w_1 = b$ then by using the fact (1.8), we obtain the identity

$$\sum_{k=0}^{n} \binom{n}{k} b^{\zeta(k+r)} (ab)^{\left\lfloor \frac{k}{2} \right\rfloor + \zeta(k)\zeta(r)} p_{k+r} = b^{\zeta(r)} p_{2n+r},$$

which can be found in [1, Theorem 7].

3 Conclusion

In this paper, we considered the bi-periodic Horadam sequences $\{w_n\}$, which is defined by the recurrence $w_n = aw_{n-1} + w_{n-2}$, if n is even, $w_n = bw_{n-1} + w_{n-2}$, if n is odd with arbitrary initial conditions w_0, w_1 and nonzero numbers a, b. Motivated by Horadam's results in [4], we gave some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences in [3] and [1]. Moreover, we derived some new identities for the bi-periodic Lucas sequences.

References

- [1] Bilgici, G. (2014) Two generalizations of Lucas sequence. *Appl. Math. Comput.*, 245, 526–538.
- [2] Edson, M., Lewis, S. & Yayenie, O. (2011) The *k*-Periodic Fibonacci Sequence and an Extended Binet's Formula, *Integers*, 11, 739–751.
- [3] Edson, M. & Yayenie, O. (2009) A new generalizations of Fibonacci sequences and extended Binet's Formula, *Integers*, 9, 639–654.
- [4] Horadam, A. F. (1965) Basic Properties of a Certain Generalized Sequence of Numbers, *Fibonacci Quart.*, 3(3), 161–176.
- [5] Panario, D., Sahin, M. & Wang, Q. (2011) A family of Fibonacci-like conditional sequences, *Integers*, 13 (2013), (A78).
- [6] Sahin, M. (2011) The Gelin–Cesaro identity in some conditional sequences, *Hacet. J. Math. Stat.*, 40(6), 855–861.
- [7] Tan, E. & Ekin, A. B. (2014) On convergence properties of Fibonacci-like conditional sequences. *Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat.*, 63(2), 119–127.
- [8] Tan, E. & Ekin, A. B. (2017) Some Identities On Conditional Sequences By Using Matrix Method. *Miskolc Mathematical Notes*, 18(1), 469–477.
- [9] Tan, E. & Ekin, A. B. (2015) Bi-Periodic Incomplete Lucas Sequences. Ars Combinatoria, 123, 371–380.
- [10] Yayenie, O. (2011) A note on generalized Fibonacci sequence, Appl. Math. Comput., 217, 5603–5611.