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Abstract: In this paper, we give some basic properties of the bi-periodic Horadam sequences
which generalize the known results for the bi-periodic Fibonacci and Lucas sequences. Also, we
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1 Introduction
The Horadam sequence {W,,} is defined by Horadam [4] as:
W, = an,1 - an727 n =2 (1.1)

with initial conditions Wy, W, where W, Wy, p, q are arbitrary integers. It has considered a
generalization of the Fibonacci and Lucas sequences. In particular, if we take ¢ = —1, Wy =
0,W; = 1 we obtain the generalized Fibonacci sequence {u,} and if we take ¢ = —1, W, =
2, W, = p we obtain the generalized Lucas sequence {v,, }.

Another generalization of the Fibonacci and Lucas sequence, named as the bi-periodic Fi-
bonacci sequence {¢, } is defined by

3
Y
N

n— n—=2, f i
qn:{aq 1+ @n—2, 1 niseven (12)

bgn_1+ qn_o, ifmnisodd
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with initial values ¢y = 0, ¢ = 1 and a, b are nonzero numbers (see [3]) and the bi-periodic
Lucas sequence {p, } is defined by

Dy — { bpn_1 + pn_s, ifniseven 0> (1.3)

aPn_1 + Pn_o, ifnisodd ’

with the initial conditions py = 2, p; = a (see [1]). If we take a = b = 1 in {g,}, we get
the classical Fibonacci sequence and if we take a = b = 1 in {p,}, we get the classical Lucas
sequence. The Binet formulas of the sequences {¢, } and {p,, } are given by

a((nJrl) a” — Bn
= 14
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respectively, where o = that is, o and (3 are the roots of the
polynomial z> — abxz — ab and ¢ (n) = n — 2 | 2] is the parity function, i.e., { (n) = 0 when n is
evenand  (n) = 1 when nis odd. Let a?b*>+4ab # 0. Note that o+ = ab, a—f = /a2b? + 4ab
and aff = —ab.

A further generalization introduced by Sahin [6] as a Fibonacci conditional sequence { f,, }:

f— afn_1+cfno, %fn?s even n> 2 (1.6)
bfn_1+df,_o, ifnisodd

with initial conditions f, = 0, fj = 1 where a, b, ¢, d are nonzero numbers. By taking initial
conditions 2 and b, authors gave some properties of the Lucas conditional sequence {l,,} in [8].
It should be noted that more general case of these sequences can be found in [5] and more results
related to these sequences we refer to [1,2,5-10].

In this paper, we consider the sequence {w,, } which is defined first in [3] as:

w, = AWp_1 + Wp_a, %fn %s even 2 (1.7
bw,_1 + wy,_s, ifnisodd

with arbitrary initial conditions wy, w; where wy, w, a, b are nonzero numbers. Here we call the
sequence {wy, }, the bi-periodic Horadam sequence. Motivating by Horadam’s results in [4], our
aim is to obtain some basic properties of the bi-periodic Horadam sequence. Moreover, we give
some new identities for the bi-periodic Lucas sequences by using these properties.

Some sequences in the literature can be stated in terms of the sequence {w,, } as:

1. If we take wy = 0,w; = 1 in {w, }, we get the bi-periodic Fibonacci sequence {g, } in [3].

2. If we take wg = 2, w; = bin {w, }, we get the Lucas conditional sequence {l,,} in [8] with
the case of ¢ = d = 1. If we replace a and b in {/,,}, we get the bi-periodic Lucas sequence

{pn} in [1]. Thus we have the fact
b ¢(n)
by = <—> Pn- (1.8)

a
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Note that the above equality gives the relation between the sequences {/,,} and {p,}. We
will use this fact for further results.

3. If we take a = b = pand wyg = 0,w; = 1 in {w,}, we get the generalized Fibonacci
sequence {u,} .

4. If we take a = b = p and wy = 2, w; = p in {w,}, we get the generalized Lucas sequence

{on}.

2 Main results

In this section, we give some basic properties of the bi-periodic Horadam sequences. To obtain
these properties, we use the Binet formula of {w,, } which can be obtained by using the following
result in [3, Theorem 8]. This result gives the relation between the sequences {w,, } and {g, } .

Lemma 1. /3, Theorem 8] For n > 0, we have

b ¢(n)
Wy, = guwy + (5) Qn—1Wo. (2.1)

Now, by using Lemma 1 and the Binet formula of {¢, } in (1.4), we can easily obtain the Binet
formula for the sequence {w, }.

Theorem 1. (Binet Formula) For n > 0, we have

(Aa™"' — Bp™ 1), 2.2)

where A 1= (—ale“wa) and B = (—5w1+bw°)
: - : ).

Proof. By using Lemma 1 and (1.4), we get
b ¢(n)
Wy, = (pWi+ <_> Gn—1Wo
a
aC(n-i—l)

a — 571) wn (é)C(n) aC(n) (O{n_l o 571—1) y
(ab)l2] \ =5 " \a (ab)L"=") a—f ’

¢(n+1) n __ [N n—1 _ An—1
— a (a 6 wl + b%wo)

(ab)l3] \ a=p a—f
— att D Lol (qwy 4 bwg) — B (Bwy + bw0)>
(ab) L%J o — 6
)

_ (AOén_l - Bﬁn_l) )

O

Another relation between the sequences {w,, } and {¢,,} can be given in the following theorem.
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Theorem 2. Forn > 0, we have

n+1
Wn4+14n — WpQnt+1 = (_1) Wo-

Proof. By using Lemma 1, we have

Wp4+14n — Wpldn+1 — qny1W1 + (5) qnWo | dn

b ¢(n)
- qnwl—i‘(a) Gn—1Wo | Gni1

= (qn-f—lCIn - QnQn-H) wn

+(<9>C(n+1) - <9>C(n) )
dy Gn—19n+1 | Wo
a a
((b)l—C(n) , (b)C(n) )
= - 4, — | — Gn—1Gn+1 | Wo
a a
a C(n) b ) b C(n)
= (g) —q, — \— Gn—1Gn+1 | Wo
a a

—((n b —((n n
- (GC(n)b ¢( )qu — aq—Sm)pd( )Qn1Qn+1) Wo.
By using the Cassini’s identity for the sequence {¢, }

which is given in [3, Theorem 3], we get the desired result. U

Note that if we take wg = 2 and w; = b, then by using the fact (1.8), the above theorem

b ¢(n+1) b ¢(n) X
<_) Pr+1Gn — (a> Pnln+1 = 2 (_1)n+ 5

a

reduces the identity

which can be found in [1, Corallary 3].
Now, we state the Cassini’s identity for the bi-periodic Horadam sequences. Since the Cassini’s
identity is a special case of the Catalan’s identity, we only prove the Catalan’s identity.

Theorem 3. (Cassini’s identity) For any nonnegative integer n, we have
GI_C(n)bC(n)wn—lwn+1 _ ag(n)bl_C(n)w?L = (-1)” [aw% — (ab) Wol1 — bw%] .
Theorem 4. (Catalan’s identity) For any nonnegative integer n, we have

aC(n—r)bl—C(n—r)wn_Twn+T _ aC(n)bl—C(”)wi

(_1)n7r+1 (ar — BT)

CORCTE) [aw; — (ab) wow; — bwyg] .
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Proof. By using the Binet formula of {w, }, we have

wn—rwn+T_w$l
A PP ner=1y g1
EpEEES (Aa""" = Bp" 1) Aa™ — B

>+ n—1 n—1\2
(ap)?Lt] (Aa™™ = B5™)
aQC(n—r—l)

_ 2 2n—2 n—r—1 on+r—1 n—r—1_n+r—1 2 n2n—2
= ) E] (A% AB ("B +4r M) 4 B2 PR

q2¢(n+1) 5 9n_9 n—1 on—1 2 p2n—2
T (A20*"2 = 2AB (o' ") + B23*"?)
a¢(n=r=1) 2 2n-—2 n—r—1gntr—1 | gn—r—1_n+4r—1 2 p2n—2
:W(Aa —AB (oA 4 BT + B
q26(n+1) 2 op—2 n—1 gn—1 2 n2n—2
_W(Aa —2AB (a"'8"") + B2 5*)
1

(ab)” [al—‘rC(n—r—‘rl)bC(n—T) (A2a2n—2 _AB (an—r—15n+r—1 4+ Bn—r—lan—i-r—l) + B262n—2)

_a1+C(n+1)bC(n) (A2a2n—2 —9ARB (an—lﬁn—l) + B262n—2)] )

Therefore, we obtain

QIO D) G2

- [ram ()t (5) o) eaasion]
e [2((5) 7+ (3) -2

(. n—rCL(O/_BT)Q
_( 1) (ab)r

By using the definition of A and B in (2.2), we get

(—UWW%AB R Gl (aw1+bwo) (ﬁwl +wa)

AB.

(ab)" a—f a—pf
Ly g@ =B (zab)wd + b (ad) wown + buf
(ab)" ab (ab + 4)
w1 (a7 —pB7)?

(=1)

(b (@b 14y [t — (ab) wown — bu]
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Note that if we take » = 1 in the above theorem, we obtain the Cassini’s identity for the
bi-periodic Horadam sequences.
o If we take wy = 0 and w; = 1 in the above theorem, we get the Catalan’s identity for {g,, }

a((nfr)blf((nfr)q C(")blfg(”) q121 — (_1)n+1—7‘ aC(T) blfC(T)qf

nfranrr —a

in [3, Theorem 4].

o If we take wy = 2 and w; = b then by using the fact (1.8), we get the identity
b ¢(n+r) b ¢(n) ) (_1)n+r ; .
(a) Pn—rDPn+tr — (a) P = W (Oé - B )
in [1, Theorem 4].

The following theorem gives the d’Ocagne’s identity for the bi-periodic Horadam sequences
{w,} . It can be proven similarly by using the Binet formula of {w, }. Note that if we consider
the case wy = 2 and w; = b, we get a new identity for the bi-periodic Lucas sequences.
Theorem 5. (d’Ocagne’s identity) For any nonnegative integer n, we have

C(mntm) ¢ (mn-tn) C(mntn) p¢(mn-tm)

a

= (=1)"a" g, [aw] — (ab) wowy — bwg] .

WmWpy1 — A Wm+1Wn

e If we take wy = 0 and w; = 1 in the above theorem, we get the d’Ocagne’s identity for
{an}

S mntm) pC(mn-tn) C(mn-+n) pC(mn-+m) (—1)" gSlm=)

gmin+1 — @ dm—n

dm+19n =
in [3, Theorem 5].
o If we take wy = 2 and w; = b, then by using the fact (1.8), we get
gllmntm pllmntm) o, - qSlmndm) pl(mndn)
= (=D)"" e (ab + 4) gn
= (_1)n+1 atm=m (Pm-n—1+ Pm—-n+1) 2.3)

which is a new identity for {p,} .

m+1Pn

Finally, we state two binomial formula for the bi-periodic Horadam numbers. As a conse-
quence of the following theorem, we can obtain a new identity for the bi-periodic Lucas numbers.

Theorem 6. (Generalized Catalan’s identity) For any nonnegative integer n, we have

attr Y an%éj n—1 k—2 k
w, = —————F—— | (abwy + 2bwy) ( ) (ab)" """ (ab+4)
271 (gb) | %] P 2k+1



Proof. By using the Binet formula of {w, } and the Binomial expansion formula, we have

(ab) L%J . n—1 n—1
an = Aa — Bﬁ
n—1 n—1
:A<ab+\/Z> _B<ab—\/Z)
2 2
L (= (n=1\, i K
e (a2 (7 ()
k=0
-1 k
- n—k—1
_BZ< L )(ab) (—\/Z> )
k=0
1 LnTﬁJ n—1
. - n—2k—2 k+%
i | (A+ D) kz:% (%H) (ab) A
)
+(A=-B) Y (" 1)( b Al
2k
k=0
1 (a+ B)w + 20w L7 n—1
~ on-l ( a—lﬁ 0) 2 (2k+1) (a7 A%
k=0
L%#J n—1
- n—2k—1 Ak
+w; Z ( ok )(ab) A
k=0
1 LnTiQJ n—1
= o1 (abw1 + 2bw0) <2k . 1) ( b)"—k—2 (ab + 4>k
k=0
L%IJ n—1
- n—k—1 k
+wp Y ( o )(ab) (ab + 4)
k=0
Thus, we obtain the desired result. OJ

o If we take a = b = 1, we obtain the result in [4, identity (3.20)] for the classical Horadam
sequence.
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o If we take wy = 0 and w; = 1 we get

. [*2*)
_1(ab 2] n—1 n—k—1 k
o (aC(ZLH) W = ; <2k + 1) by

Thus, we have

n n—1
= —— N A
q gn—1 <2l€+1) (CL) (CL + ) )
k=0
which reduces the generalized Catalan’s identity in [10, Theorem 5].

o If we take wy = 2 and wy = b we get

. ["52]
n—1 (ab)LQJ o n—1 n—k—2 1
2 ey U = % <2k5+1) (ab)™ 72 (ab+ 4)**
5]
n—1 k1
+ g ( o )( )" (ab + 4)"
3]
-2 (;{__11) (ab)" ™ (ab + 4)F
5]
+ ; (”2;1)( )"t (ab + 4)F

Then by using the fact (1.8), we obtain
13

= 2 (27;) (ab) 2

which is a new identity for the bi-periodic Lucas sequences.

3

J=% (ab + 4)F, (2.4)

v
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Theorem 7. (General Binomial Sum Formula) For any nonnegative integer n, we have
Z (Z) adk_i_r) (CLb) L%J +C(k)((r) wk+r = GC(T)wZnJrr-
k=0

Proof. By using the Binet formula of {w, } , we obtain

3 (Z) 2S04 (g L5+,

_ (n) GC T HCUEr D) () | & ] +¢(k)eir)— | B2 | (Aak+r=1 — pgt+r=1)

— a (ab)wzﬁ Ao i (Z) of — BgT! zn: <Z> 51

k=0 k=0

= a(ab) 2 [Aof_l (14+a)" — BB (1+ 6>n}
— a(ab) Ao (Z—Z) - Bp! (f—;) }

((r)—r—2n

— a (ab)f (Aa2n+r—1 _ Bﬁ2n+r—1)

—  gl¢entri (ab)wJﬂW]

- QC(T) Won+r-

Wan+r

o If we take wy = 0 and w; = 1, we obtain the identity

n

n E r r
Z ( )GC(k'H”) (ab) L2J+<(k)<( ) Qk4r = a'C( )QQn—i-ra

k
k=0
which can be found in [3, Remark 1].

e If we take wy = 2 and w; = b then by using the fact (1.8), we obtain the identity

n

n k . .,
Z (k) o (ab) L5 ]+ )Pk+r =" pg iy,
k=0

which can be found in [1, Theorem 7].

3 Conclusion

In this paper, we considered the bi-periodic Horadam sequences {w, }, which is defined by the
recurrence w, = aw,_1 + W, s, if n is even, w, = bw,_1 + w,_s, if n is odd with arbitrary
initial conditions wy, w; and nonzero numbers a,b. Motivated by Horadam’s results in [4], we
gave some basic properties of the bi-periodic Horadam sequences which generalize the known
results for the bi-periodic Fibonacci and Lucas sequences in [3] and [1]. Moreover, we derived
some new identities for the bi-periodic Lucas sequences.
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