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1 Introduction

Hypercomplex numbers are defined by Kantor and Solodovnikov [23] as an extension of real
numbers. They are finite-dimensional algebra over R which need not be commutative or
associative. They have many applications in geometry, trigonometry, physics, robotics, quantum
mechanics, color image processing etc. Especially, associative and commutative hypercomplex
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algebras are suitable for digital signal processing [3]. Whereas the quaternions, octonions, and
sedenions are the best known noncommutative hypercomplex numbers, the two-dimensional
hypercomplex numbers are those of commutative.

A general two-dimensional hypercomplex numbers are defined by

Cp,q =
{
a0 + a1J | J2 = p+ qJ, a0, a1, p, q ∈ R, J /∈ R

}
.

For q =0, these number systems are denoted by Cp, and called as the system of generalized
complex numbers. It is well-known that the set Cp yields the complex numbers, dual numbers,
and hyperbolic (perplex, double, split-complex) numbers when p is equal to −1, 0, and 1,

respectively. The geometry of these number systems was investigated by Harkin and Harkin [19].
For an overview of these numbers, we refer to [5, 13, 24, 37].

Gurses et al. [16] introduced the dual-generalized complex numbers by taking any dual number
with generalized complex number coefficients instead of real numbers. In particular, the set of
dual-generalized complex numbers is defined by

DCp = {a0 + a1J + a2ε+ a3Jε | a0, a1, a2, a3 ∈ R} ,

where the dual unit ε and generalized complex unit J satisfy the following rules:

J2 = p,−∞ < p < ∞, ε2 = 0, ε ̸= 0, εJ = Jε. (1)

It is clear to see that this new commutative number system reduces to dual-complex numbers
when p = −1, hyper-dual numbers when p = 0, and dual-hyperbolic numbers when p = 1.
Thus, by using the dual-generalized complex numbers, one can study dual-complex, hyper-dual,
and dual-hyperbolic numbers simultaneously. For details related to dual-generalized complex
numbers, we refer to [4, 8, 9, 11, 12, 25–27].

On the other hand, the generalized quaternion algebra [10, 14] is defined by

Hλ,µ = {a0 + a1i+ a2j + a3k | a0, a1, a2, a3 ∈ R},

where the basis {1, i, j, k} satisfies the following multiplication rules:

i2 = −λ, j2 = −µ, k2 = −λµ,

ij = −ji = k, jk = −kj = µi, ki = −ik = λj (2)

with λ, µ ∈ R. For λ = µ = 1, it reduces to the real quaternion algebra, and for λ = 1, µ = −1,
it reduces to the split quaternion algebra. The addition, subtraction and multiplication of two
generalized quaternions q1 = a0 + a1i+ a2j + a3k and q2 = b0 + b1i+ b2j + b3k are defined by

q1 ± q2 = (a0 ± b0) + (a1 ± b1) i+ (a2 ± b2) j + (a3 ± b3) k,

q1q2 = a0b0 − a1b1λ− a2b2µ− a3b3λµ

+ (a0b1 + a1b0 + a2b3µ− a3b2µ) i

+ (a0b2 + a2b0 + a3b1λ− a1b3λ) j

+ (a0b3 + a3b0 + a1b2 − a2b1) k.

The norm of a generalized quaternion q1 is defined by

N (q1) := q1q1 = a20 + a21λ+ a22µ+ a23λµ,

636



where q1 = a0 − a1i− a2j − a3k is the conjugate of a generalized quaternion q1. For details on
generalized quaternion algebra, see [7, 18, 22, 29].

Many works related to quaternion sequences over some special quaternion algebras have been
extensively studied. In particular, Horadam [20] studied Fibonacci quaternions over the real
quaternion algebra H1,1, which is based on the quaternion sequences with Fibonacci number
components. Nurkan and Guven [28], defined dual Fibonacci quaternions. Also, Halıcı and
Karatas [17] introduced Horadam quaternions over real quaternion algebra H1,1 as

Qw,n = wn + wn+1i+ wn+2j + wn+3k,

where {wn} is the Horadam sequence [21] and is defined by

wn = pwn−1 + qwn−2, n ≥ 2

with the arbitrary initial values w0, w1 and nonzero integers p, q. We note that the Horadam
sequence {wn} reduces to the (p, q)-Fibonacci sequence {un} when w0 = 0, w1 = 1, and the
(p, q)-Lucas sequence {vn} when w0 = 2, w1 = p. For p = q = 1, these sequences reduce to the
classical Fibonacci sequence {Fn} and Lucas sequence {Ln}, resepectively. The Binet formula
of Horadam sequence {wn} is

wn =
Aαn −Bβn

α− β
,

where A := w1 − w0β,B := w1 − w0α, and α, β are the roots of the characteristic polynomial

x2 − px − q, that is; α =
p+
√

p2+4q

2
, β =

p−
√

p2+4q

2
. Also we have αβ = −q, α + β = p,

∆ := α−β =
√

p2 + 4q with p2+4q > 0. Thus the Binet formula of Horadam quaternions [17]
is obtained by

Qw,n =
Aα∗αn −Bβ∗βn

α− β
, (3)

where α∗ = 1+αi+α2j +α3k and β∗ = 1+ βi+ β2j + β3k. For more on Horadam sequences
and Horadam quaternions, we refer to [17, 33–36].

Similar to the Fibonacci quaternions over real quaternion algebra, Akyiğit et al. [2] studied the
Fibonacci quaternions over the generalized quaternion algebra Hλ,µ, and called it as, Fibonacci
generalized quaternions. Senturk et al. [32] studied a generalization of Horadam quaternions over
the generalized quaternion algebra Hλ,µ. Also, many authors have studied the dual-generalized
complex numbers with Fibonacci-like numbers components. In particular, Cihan et al. [6]
introduced the dual-hyperbolic Fibonacci and Lucas numbers. Gungor and Azak [15] defined the
dual-complex Fibonacci and Lucas numbers. Dual-complex Fibonacci p-numbers were studied
by Prasad [30]. Recently, Ait-Amrane et al. [1] have introduced the hyper-dual Horadam
quaternions. These numbers can also be seen as hyper-dual numbers with Horadam quaternion
coefficients. Senturk et al. [31] have introduced the dual-generalized complex Fibonacci
quaternions by taking dual Fibonacci numbers instead of real numbers as coefficients.

Motivated by the above mentioned studies, here we introduce generalized quaternions whose
components are dual-generalized complex Horadam numbers. We obtain the generating function
and the Binet formula of these new quaternions. Some algebraic properties of these quaternions
such as Vajda’s identity, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity are derived
with the help of the Binet formula. Our results can be seen as a generalization of many previous
works in the literature such as [1, 6, 15, 16].
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2 Main results

In this section, first we define the dual-generalized complex Horadam numbers, then by using
these numbers we introduce the dual-generalized complex Horadam quaternions over the
generalized quaternion algebra Hλ,µ, and call it as dual-generalized complex Horadam generalized
quaternions.

Definition 2.1. The n-th dual-generalized complex Horadam number is defined as

w̃n = wn + wn+1J + wn+2ε+ wn+3Jε,

where wn is the n-th Horadam number, ε is dual unit, and J is generalized complex unit that
satisfies the multiplication rules in (1) .

Definition 2.2. The n-th dual-generalized complex Horadam generalized quaternion is defined
as

Q̃w,n = w̃n + w̃n+1i+ w̃n+2j + w̃n+3k,

where w̃n is the n-th dual-generalized complex Horadam number and i, j, k satisfies the generalized
quaternion multiplication rules in (2) .

It is clear to see that when w0 = 0, w1 = 1, p = q = 1, and λ = µ = 1, the dual-generalized
complex Horadam generalized quaternion sequence {Q̃w,n} reduces to the DGC Fibonacci
quaternions in [31]. Thus depend on the value of p, we have the following special cases:

1. For p = −1, we get dual-complex Fibonacci and Lucas quaternions [15].
2. For p = 1, we get dual-hyperbolic Fibonacci and Lucas quaternions [6].
3. For p = 0, we get hyper-dual Horadam quaternions [1].
The n-th dual-generalized complex Horadam generalized quaternion can also be expressed as

Q̃w,n = Qw,n +Qw,n+1J +Qw,n+2ε+Qw,n+3Jε,

where Qw,n is the n-th Horadam quaternion. The addition, subtraction, and multiplication of two
dual-generalized complex Horadam generalized quaternions Q̃w,n and Q̃w,m are defined as

Q̃w,n ± Q̃w,m = (Qw,n ±Qw,m) + (Qw,n+1 ±Qw,m+1) J

+(Qw,n+2 ±Qw,m+2) ε+ (Qw,n+3 ±Qw,m+3) Jε,

Q̃w,nQ̃w,m = (Qw,nQw,m + pQw,n+1Qw,m+1) + (Qw,nQw,m+1 +Qw,n+1Qw,m) J

+(Qw,nQw,m+2 +Qw,n+2Qw,m + pQw,n+1Qw,m+3 + pQw,n+3Qw,m+1) ε

+(Qw,nQw,m+3 +Qw,n+1Qw,m+2 +Qw,n+2Qw,m+1 +Qw,n+3Qw,m) Jε,

respectively. The multiplication of two dual-generalized complex Horadam generalized quaternions
can be written in terms of dual-generalized complex Horadam numbers as:

Q̃w,nQ̃w,m = w̃nw̃m − w̃n+1w̃m+1λ− w̃n+2w̃m+2µ− w̃n+3w̃m+3λµ

+(w̃nw̃m+1 + w̃n+1w̃m + w̃n+2w̃m+3µ− w̃n+3w̃m+2µ) i

+(w̃nw̃m+2 + w̃n+2w̃m + w̃n+3w̃m+1λ− w̃n+1w̃m+3λ) j

+(w̃nw̃m+3 + w̃n+3w̃m + w̃n+1w̃m+2 − w̃n+2w̃m+1) k.

The multiplication scheme for the basis elements can be given in the following table.
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Table 1. Please add table caption here

1 i j k J ε Jε

1 1 i j k J ε Jε

i i −λ k −λj Ji εi Jεi

j j −k −µ µi Jj εj Jεj

k k λj −µi −λµ Jk εk Jεk

J J Ji Jj Jk p Jε pε

ε ε εi εj εk Jε 0 0

Jε Jε Jεi Jεj Jεk pε 0 0

Theorem 2.1. The dual-generalized complex Horadam generalized quaternions satisfy the
following relation:

Q̃w,n = pQ̃w,n−1 + qQ̃w,n−2, n ≥ 2.

Proof. From the definitions of dual-generalized complex Horadam quaternions and Horadam
quaternions, we have

pQ̃w,n−1 + qQ̃w,n−2 = p (Qw,n−1 +Qw,nJ +Qw,n+1ε+Qw,n+2Jε)

+ q (Qw,n−2 +Qw,n−1J +Qw,nε+Qw,n+1Jε)

= (pQw,n−1 + qQw,n−2) + (pQw,n + qQw,n−1) J

+(pQw,n+1 + qQw,n) ε+ (pQw,n+2 + qQw,n+1) Jε

= Qw,n +Qw,n+1J +Qw,n+2ε+Qw,n+3Jε.

Theorem 2.2. The generating function for dual-generalized complex Horadam generalized
quaternions is

G(x) =
Q̃w,0 +

(
Q̃w,1 − pQ̃w,0

)
x

1− px− qx2
.

Proof. Let

G(x) :=
∞∑
n=0

Q̃w,nx
n = Q̃w,0 + Q̃w,1x+

∞∑
n=2

Q̃w,nx
n.

From Theorem 2.1, we have(
1− px− qx2

)
G(x)

= Q̃w,0 + Q̃w,1x+
∞∑
n=2

Q̃w,nx
n − pQ̃w,0x− p

∞∑
n=2

Q̃w,n−1x
n − q

∞∑
n=2

Q̃w,n−2x
n

= Q̃w,0 + Q̃w,1x− pQ̃w,0x+
∞∑
n=2

(
Q̃w,n − pQ̃w,n−1 − qQ̃w,n−2

)
xn

= Q̃w,0 +
(
Q̃w,1 − pQ̃w,0

)
x.

Thus, we get the desired result.
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Theorem 2.3. The Binet formula of dual-generalized complex Horadam generalized quaternions
is

Q̃w,n =
Aα∗ααn −Bβ∗ββn

α− β
,

where α∗ = 1 + αi+ α2j + α3k and β∗ = 1 + βi+ β2j + β3k and α = 1 + αJ + α2ε+ α3Jε

and β = 1 + βJ + β2ε+ β3Jε.

Proof. From the Binet formula of Horadam quaternions in (3), we have

Q̃w,n = Qw,n +Qw,n+1J +Qw,n+2ε+Qw,n+3Jε

=

(
Aα∗αn −Bβ∗βn

α− β

)
+

(
Aα∗αn+1 −Bβ∗βn+1

α− β

)
J

+

(
Aα∗αn+2 −Bβ∗βn+2

α− β

)
ε+

(
Aα∗αn+3 −Bβ∗βn+3

α− β

)
Jε

=
Aα∗αn

α− β

(
1 + αJ + α2ε+ α3Jε

)
− Bβ∗βn

α− β

(
1 + βJ + β2ε+ β3Jε

)
=

Aα∗ααn −Bβ∗ββn

α− β
.

From Theorem 2.3, we obtain the Binet formulas of (p, q)-Fibonacci and Lucas cases:

Q̃u,n =
α∗ααn − β∗ββn

α− β
and Q̃v,n = α∗ααn + β∗ββn, (4)

respectively. By considering (4), we can easily obtain the following relation:

Q̃v,n = Q̃u,n+1 + qQ̃u,n−1.

We need the following lemma to obtain several properties of dual-generalized complex
Horadam generalized quaternions.

Lemma 2.1. Let θλ,µ := 1− qλ+ q2µ− q3λµ, ωλ,µ := (1− qµ) i+ (p− pλ) j + (1 + p2 + q) k.

Then we have the followings:
(i) α∗β∗ = Qv,0 − θλ,µ −∆q (Qu,0 − ωλ,µ)

(ii) β∗α∗ = Qv,0 − θλ,µ +∆q (Qu,0 − ωλ,µ)

(iii) αβ = ṽ0 − (1 + pq (1 + v2ε) + pqJε) .

Proof. (i) By using the multiplication rules in (2), we have

α∗β∗ =
(
1 + αi+ α2j + α3k

) (
1 + βi+ β2j + β3k

)
= 1− (αβ)λ− (αβ)2 µ− (αβ)3 λµ+

(
β + α + α2β3µ− α3β2µ

)
i

+
(
β2 + α2 + α3βλ− αβ3λ

)
j +

(
β3 + α3 + αβ2 − α2β

)
k

= 1 + qλ− q2µ+ q3λµ+
(
p− q2∆µ

)
i

+
(
p2 + 2q − qp∆λ

)
j +

(
p3 + 3qp+ q∆

)
k

= 2 + pi+
(
p2 + 2q

)
j +

(
p3 + 3pq

)
k −

(
1− qλ+ q2µ− q3λµ

)
−q∆(qµi+ pλj − k)

= Qv,0 − θλ,µ − q∆(Qu,0 − ωλ,µ) .

(ii) It can be proven in a similar manner to the first identity.
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(iii) By using the multiplication rules in (1), we have

αβ =
(
1 + αJ + α2ε+ α3Jε

) (
1 + βJ + β2ε+ β3Jε

)
= (1 + p (αβ)) + (α + β) J +

(
α2 + β2 + p (αβ)

(
α2 + β2

))
ε

+
(
α3 + β3 + (αβ) (α + β)

)
Jε

= 1− pq + v1J + (v2 (1− pq)) ε+ (v3 − pq) Jε

= 2 + v1J + v2ε+ v3Jε− 1− pq − pqv2ε− pqJε

= ṽ0 − (1 + pq (1 + v2ε) + pqJε) .

Note that for λ = µ = 1 and p =0, the identities in Lemma 2.1 reduce to the identities for
hyper-dual Horadam quaternions in [1, Lemma 1].

It is clear that we have the following results from Lemma 2.1:

α∗β∗ + β∗α∗ = 2 (Qv,0 − θλ,µ) , (5)

α∗β∗ − β∗α∗ = −2∆q (Qu,0 − ωλ,µ) . (6)

By using the Binet formula of dual-generalized complex Horadam generalized quaternions
and using the Lemma 2.1, we obtain the following identity.

Theorem 2.4. (Vajda’s identity) For nonnegative integers n, r, and s, we have

Q̃w,n+rQ̃w,n+s − Q̃w,nQ̃w,n+r+s

= AB (−q)n (ṽ0 − (1 + pq (1 + v2ε) + pqJε))ur ((Qv,0 − θλ,µ)us + q (Qu,0 − ωλ,µ) vs) .

Proof. From the Binet formula of dual-generalized complex Horadam generalized quaternions,
we have

∆2
(
Q̃w,n+rQ̃w,n+s − Q̃w,nQ̃w,n+r+s

)
=

(
Aα∗ααn+r −Bβ∗ββn+r

) (
Aα∗ααn+s −Bβ∗ββn+s

)
−

(
Aα∗ααn −Bβ∗ββn

) (
Aα∗ααn+r+s −Bβ∗ββn+r+s

)
= A2 (α∗α)2 α2n+r+s − ABα∗β∗αβαn+rβn+s − ABβ∗α∗βααn+sβn+r +B2

(
β∗β

)2
β2n+r+s

− A2 (α∗α)2 α2n+r+s + ABα∗β∗αβαnβn+r+s + ABβ∗α∗βαβnαn+r+s −B2
(
β∗β

)2
β2n+r+s

= AB (αβ)n αβ
(
α∗β∗ (−αrβs + βr+s

)
+ β∗α∗ (−αsβr + αr+s

))
.

By using Lemma 2.1, we have
Q̃w,n+rQ̃w,n+s − Q̃w,nQ̃w,n+r+s

=
AB

∆2
(−q)n αβ (−α∗β∗βs (αr − βr) + β∗α∗αs (αr − βr))

=
AB

∆
(−q)n αβur (β

∗α∗αs − α∗β∗βs)

=
AB

∆
(−q)n αβur (Qv,0 − θλ,µ +∆q (Qu,0 − ωλ,µ))α

s

− AB

∆
(−q)n αβur (Qv,0 − θλ,µ −∆q (Qu,0 − ωλ,µ)) β

s

= AB (−q)n (ṽ0 − (1 + pq (1 + v2ε) + pqJε))ur((Qv,0 − θλ,µ)us + q(Qu,0 − ωλ,µ)vs).
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If we set r, s → m and n → n − m in Theorem 2.4, we get the following corollary which
corresponds to Catalan’s identity for dual-generalized complex Horadam generalized quaternions.

Corollary 2.1. For nonnegative integers n and m with n ≥ m, we have

Q̃w,n−mQ̃w,n+m − Q̃2
w,n

= −AB (−q)n−m (ṽ0 − (1 + pq (1 + v2ε) + pqJε))um ((Qv,0 − θλ,µ)um + q (Qu,0 − ωλ,µ) vm) .

If we set r = s = 1 and n → n − 1 in Theorem 2.4, we get the following corollary which
corresponds to Cassini’s identity for dual-generalized complex Horadam generalized quaternions.

Corollary 2.2. For positive integer n, we have

Q̃w,n−1Q̃w,n+1 − Q̃2
w,n

= −AB (−q)n−1 (ṽ0 − (1 + pq (1 + v2ε) + pqJε)) (Qv,0 − θλ,µ + pq (Qu,0 − ωλ,µ)) .

If we set r = 1 and s → m−n in Theorem 2.4, we get d’Ocagne’s identity for dual-generalized
complex Horadam generalized quaternions.

Corollary 2.3. For nonnegative integers n and m with m ≥ n, we have

Q̃w,n+1Q̃w,m − Q̃w,nQ̃w,m+1

= AB (−q)n (ṽ0 − (1 + pq (1 + v2ε) + pqJε)) ((Qv,0 − θλ,µ)um−n + q (Qu,0 − ωλ,µ) vm−n) .

Next, we give some relations which are obtained by using Lemma 2.1 and the Binet formula
of dual-generalized complex Horadam generalized quaternions and the Binet formulas in (4). To
avoid repetition we only give the proof of the identity (i).

Theorem 2.5. For nonnegative integers n and m such that m ≥ n, we have
(i) Q̃v,nQ̃u,m − Q̃v,mQ̃u,n

= 2 (−q)n (ṽ0 − (1 + pq (1 + v2ε) + pqJε))um−n (Qv,0 − θλ,µ) .

(ii) Q̃u,nQ̃w,m − Q̃w,mQ̃u,n

= 2 (−q)n+1 (ṽ0 − (1 + pq (1 + v2ε) + pqJε))wm−n (Qu,0 − ωλ,µ) .

Proof. (i) From the Binet formula of dual-generalized complex Horadam generalized quaternions,
we have
∆
(
Q̃v,nQ̃u,m − Q̃v,mQ̃u,n

)
=

(
α∗ααn + β∗ββn

) (
α∗ααm − β∗ββm

)
−
(
α∗ααm + β∗ββm

) (
α∗ααn − β∗ββn

)
= (α∗)2 α2αn+m − α∗β∗αβαnβm + β∗α∗αβαmβn − (β∗)2 β2βn+m

− (α∗)2 α2αn+m + α∗β∗αβαmβn − β∗α∗αβαnβm + (β∗)2 β2βn+m

= α∗β∗ (αβ)n αβ
(
αm−n − βm−n

)
+ β∗α∗ (αβ)n αβ

(
αm−n − βm−n

)
= (αβ)n αβ

(
αm−n − βm−n

)
(α∗β∗ + β∗α∗) .

From (5), we have
∆
(
Q̃v,nQ̃u,m − Q̃v,mQ̃u,n

)
= 2 (−q)n (ṽ0 − (1 + pq (1 + v2ε) + pqJε))∆um−n (Qv,0 − θλ,µ) .
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Now, we give some summation formulas for dual-generalized complex Horadam generalized
quaternions.

Theorem 2.6. For n ≥ 2, we have

n−1∑
r=1

Q̃w,r =
Q̃w,n − Q̃w,1 + q

(
Q̃w,n−1 − Q̃w,0

)
p+ q − 1

.

Proof. From the Binet formula for dual-generalized complex Horadam generalized quaternions,
we have

n−1∑
r=1

Q̃w,r =
n−1∑
r=1

Aα∗ααr −Bβ∗ββr

α− β

=
Aα∗α

α− β

n−1∑
r=1

αr −
Bβ∗β

α− β

n−1∑
r=1

βr

=
Aα∗α

α− β

(
αn − α

α− 1

)
−

Bβ∗β

α− β

(
βn − β

β − 1

)
=

1

(α− β) (1− p− q)

(
−
(
Aα∗ααn −Bβ∗ββn

)
− q

(
Aα∗ααn−1 −Bβ∗ββn−1

)
+q

(
Aα∗α−Bβ∗β

)
+
(
Aα∗αα−Bβ∗ββ

))
=

−Q̃w,n − qQ̃w,n−1 + qQ̃w,0 + Q̃w,1

1− p− q
.

Theorem 2.7. For nonnegative integers n and r, we have
n∑

m=0

(
n

m

)
qn−mpmQ̃w,m+r = Q̃w,2n+r.

Proof. From the Binet formula for dual-generalized complex Horadam generalized quaternions,
we have

n∑
m=0

(
n

m

)
qn−mpmQ̃w,m+r =

n∑
m=0

(
n

m

)
qn−mpm

(
Aα∗ααm+r −Bβ∗ββm+r

α− β

)
=

Aα∗ααr

α− β

n∑
m=0

(
n

m

)
qn−m (pα)m −

Bβ∗ββr

α− β

n∑
m=0

(
n

m

)
qn−m (pβ)m

=
Aα∗ααr

α− β
(q + pα)n −

Bβ∗ββr

α− β
(q + pβ)n

=
Aα∗αα2n+r −Bβ∗ββ2n+r

α− β
= Q̃w,2n+r.

Finally, we give a matrix representation for dual-generalized complex Horadam quaternions.

Theorem 2.8. For n ≥ 0, we have[
p q

1 0

]n [
Q̃w,2 Q̃w,1

Q̃w,1 Q̃w,0

]
=

[
Q̃w,n+2 Q̃w,n+1

Q̃w,n+1 Q̃w,n

]
.

Proof. It can be proven easily by the mathematical induction on n.
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If we take the determinant of both sides of the above matrix equality, we obtain the Cassini’s
identity for the sequence

{
Q̃w,n

}
in a simple way as:

Q̃w,n+1Q̃w,n−1 − Q̃2
w,n = (−q)n−1

(
Q̃w,2Q̃w,0 − Q̃2

w,1

)
.

3 Conclusion

In this paper, we define generalized quaternions with dual-generalized complex Horadam numbers.
The main advantage of introducing the dual-generalized complex Horadam generalized
quaternions is that many dual-generalized complex numbers with celebrated numbers such as
Fibonacci, Lucas, Pell, Pell–Lucas, Jacosthal, Jacobsthal–Lucas numbers can be deduced
as particular cases of these quaternions. Also, one can obtain real quaternions, split quaternions,
and degenere-split quaternions. We give generating function and Binet formula for these
quaternions. With the help of the Binet formula of dual-generalized Horadam generalized
quaternions, we derive many properties of these quaternions such as summation formulas,
binomial sum identities, Vajda’s identity, Catalan’s identity, Cassini identity, and d’Ocagne’s
identity. The algebra of generalized quaternions is noncommutative, whereas the algebra of
dual-generalized complex numbers is commutative. For interested readers, the results of this
paper could be applied for hyperbolic generalized complex Horadam numbers and complex-
generalized complex Horadam numbers.

References

[1] Ait-Amrane, N. R., Gok, I., & Tan, E. (2021). Hyper-dual Horadam quaternions. Miskolc
Mathematical Notes. 22(2), 903–913.

[2] Akyigit, M., Kosal, H. H., & Tosun, M. (2014). Fibonacci generalized quaternions.
Advances in Applied Clifford Algebras, 24, 631–641.

[3] Alfsmann, D. (2006). On families of 2N-dimensional hypercomplex algebras suitable for
digital signal processing. 14th European Signal Processing Conference, Florence, Italy.

[4] Aslan, S., Bekar, M., & Yayli, Y. (2020). Hyper-dual split quaternions and rigid body
motion. Journal of Geometry and Physics, 158, Article ID 103876.

[5] Catoni, F., Cannata, R., Catoni, V., & Zampetti, P. (2004). Two-dimensional hypercomplex
numbers and related trigonometries and geometries. Advances in Applied Clifford Algebras,
14, 47–68.

[6] Cihan, A., Azak, A.Z., Gungor, M.A., & Tosun, M. (2019). A Study on Dual hyperbolic
Fibonacci and Lucas numbers. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria
Matematica, 27(1), 35–48.

644



[7] Clifford, W. K. (1873). Preliminary sketch of biquaternions. Proceedings of London
Mathematical Society, 4, 361–395.

[8] Cockle, J. (1849). On a new imaginary in algebra. Philosophical Magazine, London–
Dublin–Edinburgh, 3(34), 37–47.

[9] Cohen, A., & Shoham, M. (2018). Principle of transference–An extension to hyper-dual
numbers. Mechanism and Machine Theory, 125, 101–110.

[10] Dickson, L. E. (1924). On the theory of numbers and generalized quaternions. American
Journal of Mathematics, 46(1), 1–16.

[11] Fike, J. A. (2009). Numerically exact derivative calculations using hyper-dual numbers. 3rd
Annual Student Joint Workshop in Simulation-Based Engineering and Design.

[12] Fike, J. A., & Alonso, J. J. (2011). The development of hyper-dual numbers for exact
second-derivative calculations. 49th AIAA Aerospace Sciences Meeting 28 including the
New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7.

[13] Fjelstad, P., & Gal, S. G. (2001). Two-dimensional geometries, topologies, trigonometries,
and physics generated by complex-type numbers. Advances in Applied Clifford Algebras,
11(1), 81–107.

[14] Griffiths, L. W. (1928). Generalized quaternion algebras and the theory of numbers.
American Journal of Mathematics, 50(2), 303–314.

[15] Gungor, M. A., & Azak, A. Z. (2017). Investigation of dual-complex Fibonacci,
dual-complex Lucas numbers and their properties. Advances in Applied Clifford Algebras,
27, 3083–3096.

[16] Gurses, N., Senturk, G. Y., & Yuce, S. (2021). A study on dual-generalized complex
and hyperbolic-generalized complex numbers. Gazi University Journal of Science, 34(1),
180–194.

[17] Halici, S., & Karatas, A. (2017). On a generalization for quaternion sequences. Chaos,
Solitons and Fractals, 98, 178–182.

[18] Hamilton, W. R. (1853). Lectures on Quaternions. Hodges and Smith, Dublin.

[19] Harkin, A. A., & Harkin, J. B. (2004). Geometry of generalized complex numbers.
Mathematics Magazine, 77(2), 118–129.

[20] Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The
American Mathematical Monthly, 70, 289–291.

[21] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The
Fibonacci Quarterly, 3(3), 161-176.

645



[22] Jafari, M., & Yaylı, Y. (2015). Generalized quaternions and their algebraic properties.
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and
Statistics, 64(1), 5–27.

[23] Kantor, I., & Solodovnikov, A. (1989). Hypercomplex Numbers. Springer-Verlag, New York.

[24] Lie, S., & Scheffers G. (1893). Vorlesungen uber continuerliche Gruppen, Kap. 21, Taubner,
Leipzig.

[25] Majernik, V. (1996). Multicomponent number systems. Acta Physica Polonica Series A, 90,
491–498.

[26] Messelmi, F. (2015). Dual-complex numbers and their holomorphic functions. https:
//hal.archives-ouvertes.fr/hal-01114178.

[27] Motter, A. E., & Rosa, A. F. (1998). Hyperbolic calculus. Advances in Applied Clifford
Algebras, 8(1), 109–128.

[28] Nurkan, S. K., & Guven, I. A. (2015). Dual Fibonacci quaternions. Advances in Applied
Clifford Algebras, 25(2), 403–414.

[29] Pottman, H., & Wallner, J. (2000). Computational Line Geometry. Springer-Verlag Berlin
Heidelberg New York.

[30] Prasad, B. (2021). Dual complex Fibonacci p-numbers. Chaos, Solitons and Fractals, 145,
Article ID 109922.

[31] Senturk, G. Y., Gurses, N., & Yuce, S. (2022). Construction of dual-generalized complex
Fibonacci and Lucas quaternions. Carpathian Mathematical Publications, 14(2), 406–418.

[32] Senturk, T. D., Dasdemir, A., Bilgici, G., & Unal, Z. (2019). On unrestricted Horadam
generalized quaternions. Utilitas Mathematica, 110, 89-98.

[33] Tan, E. (2017). Some properties of the bi-periodic Horadam sequences. Notes on Number
Theory and Discrete Mathematics, 23(4), 56–65.
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