Hunar Sherzad Taher and Saroj Kumar Dash
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 3, Pages 448–459
DOI: 10.7546/nntdm.2025.31.3.448-459
Full paper (PDF, 307 Kb)
Details
Authors and affiliations
Hunar Sherzad Taher
Department of Mathematics, School of Advanced Sciences
Vellore Institute of Technology, Chennai, 600127, India
Saroj Kumar Dash
Department of Mathematics, School of Advanced Sciences
Vellore Institute of Technology, Chennai, 600127, India
Abstract
Let and
be generalizations of the Fibonacci and Lucas sequences, where
. For these sequences the initial
terms are
and
, and each subsequent term is the sum of the preceding
terms. In this paper, we determined all first and second kinds of Thabit numbers that can be expressed as the sums of
-Fibonacci and
-Lucas numbers. We employed the theory of linear forms in logarithms of algebraic numbers and a reduction method based on the continued fraction.
Keywords
- Diophantine equations
- Linear forms in logarithms
- Generalized Fibonacci numbers
- Generalized Lucas numbers
- Reduction method
2020 Mathematics Subject Classification
- 11D61
- 11D45
- 11J70
- 11J86
- 11B39
References
- Altassan, A., & Alan, A. (2024). Mersenne numbers in generalized Lucas sequences. Comptes rendus de l’Académie bulgare des Sciences, 77(1), 3–10.
- Bravo, J. J., & Gómez, C. A. (2016). Mersenne k-Fibonacci numbers. Glasnik Matematicki, 51(2), 307–319.
- Bravo, J. J., Gómez, C. A., & Luca, F. (2016). Powers of two as sums of two k-Fibonacci numbers. Miskolc Mathematical Notes, 17(1), 85–100.
- Bravo, J. J., Gómez, C. A., & Luca, F. (2018). A Diophantine equation in k-Fibonacci numbers and repdigits. Colloquium Mathematicum, 152(2), 299–315.
- Bravo, J. J., & Herrera, J. L. (2020). Fermat k-Fibonacci and k-Lucas numbers.
Mathematica Bohemica, 145(1), 19–32. - Bravo, J. J., & Herrera, J. L. (2021). Even perfect numbers in generalized Pell sequences. Lithuanian Mathematical Journal, 61(1), 1–12.
- Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequences. Revista Colombiana de Matemáticas, 46(1), 67–79.
- Bravo, J. J., & Luca, F. (2014). Repdigits in k-Lucas sequences. Proceedings-Mathematical Sciences, 124(2), 141–154.
- Bugeaud, Y., Mignotte, M., & Siksek, S. (2006). Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics, 163(3), 969–1018.
- De Weger, B. M. M. (1989). Algorithms for Diophantine Equations. CWI Tracts, Vol. 65, Centrum voor Wiskunde en Informatica, Amsterdam.
- Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17 (4), Article 14.4.7.
- Gueye, A., Rihane, S. E., & Togbé, A. (2022). Coincidence between k-Fibonacci numbers and products of two Fermat numbers. Bulletin of the Brazilian Mathematical Society, 53(2), 541–552.
- Hernane, M. O., Rihane, S. E., Seffah, S., & Togbé, A. (2022). On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers. Boletín de la Sociedad Matemática Mexicana, 28(2), Article ID 36.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izvestiya Mathematics, 64(6), 1217–1269.
- Normenyo, B. V., Rihane, S. E., & Togbe, A. (2021). Fermat and Mersenne numbers in k-Pell sequence. Matematychni Studii, 56(2), 115–123.
- Rihane, S. E., & Togbe, A. (2022). On the intersection of k-Lucas sequences and some binary sequences. Periodica Mathematica Hungarica, 84(1), 125–145.
- Sanchez, S. G., & Luca, F. (2014). Linear combinations of factorials and S-units in a binary recurrence sequence. Annales Mathématiques du Québec, 38, 169–188.
- Şiar, Z., & Keskin, R. (2023). On perfect powers in k-generalized Pell–Lucas sequence. Mathematical Notes, 114(5), 936–948.
- Şiar, Z., Luca, F., & Zottor, F. S. (2025). Common values of two k-generalized Pell sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 256–268.
Manuscript history
- Received: 13 October 2024
- Revised: 31 July 2025
- Accepted: 2 August 2025
- Online First: 4 August 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Şiar, Z., Luca, F., & Zottor, F. S. (2025). Common values of two k-generalized Pell sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 256–268.
Cite this paper
Taher, H. S., & Dash, S. K. (2025). On sums of k-generalized Fibonacci and k-generalized Lucas numbers as first and second kinds of Thabit numbers. Notes on Number Theory and Discrete Mathematics, 31(3), 448-459, DOI: 10.7546/nntdm.2025.31.3.448-459.