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Abstract: Let (F
(k)
r )r≥2−k and (L

(k)
r )r≥2−k be generalizations of the Fibonacci and Lucas

sequences, where k ≥ 2. For these sequences the initial k terms are 0, 0, . . . , 0, 1 and 0, 0, . . . , 2, 1,
and each subsequent term is the sum of the preceding k terms. In this paper, we determined all
first and second kinds of Thabit numbers that can be expressed as the sums of k-Fibonacci and
k-Lucas numbers. We employed the theory of linear forms in logarithms of algebraic numbers
and a reduction method based on the continued fraction.
Keywords: Diophantine equations, Linear forms in logarithms, Generalized Fibonacci numbers,
Generalized Lucas numbers, Reduction method.
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1 Introduction

Let (T (k)
r )r≥2−k be a k-order linear recurrence sequence, where k ≥ 2 and defined as

T (k)
r = T

(k)
r−1 + T

(k)
r−2 + · · ·+ T

(k)
r−k, for all r ≥ 2,
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with initial conditions T (k)
−(k−2) = T

(k)
−(k−3) = · · · = T

(k)
−1 = 0, T

(k)
0 = a, T

(k)
1 = b. If (a, b) = (0, 1),

the sequence (T
(k)
r )r≥2−k becomes k-generalized Fibonacci and is denoted by (F

(k)
r )r≥2−k.

If (a, b) = (2, 1), we obtain the k-generalized Lucas sequence and denote it as (L
(k)
r )r≥2−k.

In both cases, if k = 2 we obtain the Fibonacci and Lucas sequences.
The Thabit number refers to the Thâbit ibn Qurra number, which is also known as the

321 number. The first and second kinds of Thabit numbers are of the forms 3 · 2d − 1 and
3 · 2d + 1 for a non-negative integer d, respectively. The first and second kinds of Thabit
numbers are represented by sequences A055010 and A181565 in the Online Encyclopedia of
Integer Sequences (OEIS), respectively.

Several investigations have been conducted on perfect powers, Fermat, and Mersenne numbers,
which can be expressed as generalized linear recurrence sequences. Bravo and Luca [7] showed
that all k-generalized Fibonacci numbers can be written as powers of two. Later, Bravo et al.
[3] determined the sums of two k-generalized Fibonacci numbers, which are powers of two.
Furthermore, Bravo and Gómez [2] found all the common terms between Mersenne numbers and
k-Fibonacci numbers. Bravo and Herrera [5] proved the connection between Fermat numbers
and k-Fibonacci or k-Lucas numbers. In addition, they investigated generalized Pell sequences
expressed as even perfect numbers [6]. Normenyo et al. [15] showed the Fermat and Mersenne
numbers in k-Pell sequences.

Recently, Hernane et al. [13] studied the Fermat and Mersenne numbers expressible as a
product of two k-Fibonacci numbers. Gueye et al. [12] determined the coincidence between
k-Fibonacci numbers and the products of two Fermat numbers. Şiar and Keskin [18] worked on
perfect powers, which can be written as a k-generalized Pell–Lucas sequence. Altassan and Alan
[1] showed that all Mersenne numbers that can be written as generalized Lucas sequences. Şiar et
al. [19] identified the common values of two k-generalized Pell sequences. This paper examines
the first and second types of Thabit numbers expressed as sums of k-generalised Fibonacci and
k-generalised Lucas sequences. Finally, we present the following results.

Theorem 1.1. The only solutions of the Diophantine equation

F (k)
r + L(k)

s = 3 · 2d ± 1, (1)

for non-negative integers r, s and d with r > s ≥ 2 and k ≥ 2, for the first kind are

(r, s, d, k) ∈

{
(3, 2, 1,≥ 2), (6, 2, 2, 2), (12, 8, 6, 2), (6, 4, 3, 3),

(8, 2, 4, 3), (5, 2, 2,≥ 4), (9, 7, 6, 4)

}
,

and for the second kind are

(r, s, d, k) ∈ {(4, 3, 1, 2), (8, 3, 3, 2), (4, 2, 1,≥ 3), (5, 3, 2, 3)} .

In Theorem 1.1, we examined the case in which r > s ≥ 2. Moreover, assuming that r > s

with s ∈ {0, 1}, Eq. (1) becomes F (k)
r + 2 = 3 · 2d ± 1 and F (k)

r + 1 = 3 · 2d ± 1. Consequently,
instead of computing both equations, we derive the following theorem.

449



Theorem 1.2. The only solutions of the Diophantine equation

F (k)
r = 3 · 2d − y, (2)

in non-negative integers r, d and y with y ∈ {0, 1, 2, 3} and k ≥ 2 are given by

(r, d, y, k) ∈

{
(4, 0, 0, 2), (7, 3, 0, 3), (3, 0, 1,≥ 2), (5, 1, 1, 2), (1, 0, 2,≥ 2),

(2, 0, 2,≥ 2), (4, 1, 2,≥ 3), (0, 0, 3,≥ 2), (4, 1, 3, 2), (8, 3, 3, 2)

}
.

2 Auxiliary results

In this section, we commence with several fundamental results from algebraic number theory.

2.1 Properties of k-Fibonacci and k-Lucas sequences

In this part, we examine the specific details and characteristics of both sequences, which will be
used in subsequent sections. The characteristic polynomial of both k-order sequences is Ψ(x) =
xk − xk−1 − · · · − x− 1, which constitutes an irreducible polynomial over Q[x]. The polynomial
Ψ(x) possesses precisely one real root φ(k) outside the unit circle, whilst the remaining roots are
strictly contained within a unit circle. Moreover, we have φ ∈ (2(1 − 2−k), 2) for all k ≥ 2.
Bravo et al. [4] proved that the inequalities 1/2 < fk(φ) < 3/4 and |fk (φi)| < 1 hold for all
2 ≤ i ≤ k, where fk(x) = (x − 1)/(2 + (k + 1)(x − 2)) and φi represents the zeros of Ψk(x).
In addition, the number fk(φ) is not an algebraic integer. They proved that the inequality

h (fk(φ)) < 3 log k, (3)

holds for all k ≥ 2. In [8, 11] the authors presented the following results:

F (k)
r = fk(φ)φ

r−1 + ek(r), where |ek(r)| <
1

2
, (4)

and
L(k)
r = (2φ− 1)fk(φ)φ

r−1 + ek(r), where |ek(r)| <
3

2
, (5)

hold for all r ≥ 2− k and k ≥ 2. Furthermore, the authors [7, 8] determined that the inequalities

φr−2 ≤ F (k)
r ≤ φr−1, (6)

and
φr−1 ≤ L(k)

r ≤ 2φr, (7)

hold for r ≥ 1 and k ≥ 2. In addition, in [7, 8], we can find the following equations

F (k)
r = 2r−2, for all 2 ≤ r ≤ k + 1, (8)

and
L(k)
r = 3 · 2r−2, for all 2 ≤ r ≤ k. (9)
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2.2 Linear forms in logarithms

Definition 2.1. The absolute logarithmic height is denoted by h(Υ ) and is defined by

h(Υ ) =
1

d

(
log c0 +

d∑
i=1

logmax
{∣∣Υ (i)

∣∣ , 1}) , (10)

where Υ (i) denotes the conjugates of the algebraic number Υ of degree d, and c0 > 0 is the leading
coefficient of the minimal polynomial of Υ given by f(X) = c0

∏d
i=1

(
X − Υ (i)

)
∈ Z[X].

The absolute logarithmic height of a rational number Υ =
a

b
is given by h(Υ )=log(max{|a|, b}),

where b > 0 and gcd(a, b) = 1.
In the subsequent sections of this paper, the following properties of the logarithmic height

function will be utilized:

h (Υ ± Φ) ≤ h(Υ ) + h(Φ) + log 2, h
(
ΥΦ±1

)
≤ h(Υ ) + h(Φ), and h

(
Υ t
)
= |t|h(Υ ).

The following theorem, which is a modified version of Matveev’s result [14], was presented
by Bugeaud et al. [9, Theorem 9.4].

Theorem 2.1. Let Υ1, . . . , Υt be positive real algebraic numbers in the number field L of degree
D over Q, and let b1, b2, . . . , bt be nonzero integers. LetAi be a positive real number that satisfies

Ai ≥ max {Dh (Υi) , |log (Υi)| , 0.16} , 1 ≤ i ≤ t,

and
B := max {|b1| , . . . , |bt|} .

If Λ := Υ b1
1 · · ·Υ bt

t − 1 ̸= 0, then

log |Λ| > (−1.4)
(
30t+3

) (
t4.5
) (
D2
)
(A1 · · ·At) (1 + logD)(1 + logB).

2.3 The de Weger reduction method

We present a variation of Baker and Davenport’s reduction method developed by de Weger [10]
to reduce the upper bound. Let ϑ1, ϑ2, β ∈ R be given and x1, x2 ∈ Z be unknowns.
Let

Λ = β + x1ϑ1 + x2ϑ2. (11)

Let c, δ be positive constants. We setX = max {|x1| , |x2|} and letX0, Y be positive. Assume
that

|Λ| < c · exp(−δ · Y ), (12)

Y ≤ X ≤ X0. (13)

If β ̸= 0 in Eq. (11), then, we get Λ

ϑ2
= ψ−x1ϑ+x2, where ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2. Let

p/q be a convergent of ϑ with q > X0. The distance between a real number m and the nearest
integer is denoted by ∥m∥ = min{|m− n| : n ∈ Z}. The following lemma is presented.
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Lemma 2.1. ([10, Lemma 3.3]) Suppose that ∥qψ∥ > 2X0

q
. Then the solutions of (12) and (13)

satisfy

Y <
1

δ
log

(
q2c

|ϑ2|X0

)
.

In the subsequent, we present several lemmas that are fundamental to our calculations.

Lemma 2.2. ([17, Lemma 7]) If c ≥ 1, S > (4c2)c, and L/(logL)c < S, then L < 2cS(logS)c.

Lemma 2.3. ([10, Lemma 2.2]) Let v, x ∈ R and 0 < v < 1. If |x| < v, then

| log(1 + x)| < − log(1− v)

v
|x|.

Lemma 2.4. ([4, Lemma 3]) If r < 2
k
2 where r ≥ k + 2, then F

(k)
r = 2r−2(1 + ζ), where

|ζ| < 2

2k/2
.

Lemma 2.5. ( [16, Lemma 2.6]) If r < 2
k
2 where r ≥ k + 1, then L(k)

r = 3 · 2r−2(1 + ζ), where
|ζ| < 1

2k/2
.

3 Main proof of Theorem 1.1

The proof of Theorem 1.1 is executed in the following subsection.

3.1 Case r ≤ k + 1, where k ≥ 2

In this case, the following results were obtained.

Lemma 3.1. The non-trivial solutions of the Diophantine equation(1) where 2 ≤ s < r ≤ k + 1

with k ≥ 2, for the first kind are (r, s, d) ∈ {(3, 2, 1), (5, 2, 2)}, and for the second kind only is
(r, s, d) ∈ {(4, 2, 1)}.

Proof. Given that 2 ≤ s < r ≤ k + 1, by combining (8) and (9) with Eq. (1), we obtain
2r−2 + 2s−2 = 3 · 2d ± 1. We shall consider the following two cases.

Case 1: For the first kind of Thabit number, the equation 2r−2 + 3 · 2s−2 = 3 · 2d − 1 is obtained.
Given that r > s, it follows that 2s−2(2r−s +3) = 3 · 2d − 1. Consequently, 2s−2 = 1 implies that
s = 2. Thus, the equation 2r−2 = 3 · 2d − 4 is solvable only when (r, d) ∈ {(3, 1), (5, 2)}.

Case 2: For the second Thabit number, employing the same argument as previously discussed, we
obtain s = 2 and 2r−2 = 3 · 2d − 2. The only possible solution for the equation 2r−2 = 3 · 2d − 2

is (r, d) = (4, 1).

3.2 Case r ≥ k + 2, where k ≥ 2

In this case, we determine the following results.
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3.2.1 The connection between r and d

We have r ≥ k + 2 and s < r, combining inequalities (6) and (7) with Eq. (1) yields

2d+1 ≤ 3 · 2d ± 1 = F (k)
r + L(k)

s ≤ φr−1 + 2φs ≤ φr−1 + 2φr−1 < 4 · 2r−1 ≤ 2r+1.

This leads to d < r.

3.2.2 Finding an upper bound of r in terms of k

To determine this case, we obtain the following lemma.

Lemma 3.2. If (r, s, d, k) is a solution in non-negative integers of Eq. (1) where r ≥ k + 2 with
k ≥ 2, then the following inequality holds

r < 8.2 · 1028k7(log k)5. (14)

Proof. Using (4) in Eq. (1), we obtain fk(φ)φr−1 − 3 · 2d = −L(k)
s − ek(r) ± 1. Taking the

absolute value, we get
∣∣fk(φ)φr−1 − 3 · 2d

∣∣ < 2φs + 1.5. Dividing both sides by fk(φ)φr−1 and
using 1/2 < fk(φ) < 3/4, we obtain

|Λ1| =
∣∣∣∣3 · 2dφ−(r−1)

fk(φ)
− 1

∣∣∣∣ < φs−r

(
2φ

fk(φ)
+

1.5

fk(φ)φs−1

)
<

10

φr−s
. (15)

We apply Theorem 2.1 with parameters

t := 3 (Υ1, b1) := (3/fk(φ), 1) , (Υ2, b2) := (φ,−(r − 1)), (Υ3, b3) := (2, d).

It is clear that Υ1, Υ2, Υ3 are elements of L := Q(φ) and D := [L,Q] = k. To demonstrate that
Λ1 ̸= 0, we assume that Λ1 = 0. Applying the conjugate by Q-automorphism of the Galois
extension L := Q(Υ1, Υ2, Υ3) and taking the absolute values gives 3 ≤ 3 · 2d = |fk(φi)||φi|r−1| ≤ 1,
which is contradictory. Hence, Λ1 ̸= 0. Furthermore, using the definition and properties of the
logarithmic height with (3), we can estimate that

h(Υ1) ≤ log 3 + 3 log k < 5 log k, for all k ≥ 2, h(Υ2) = logφ/k, h(Υ3) = log 2.

Thus, A1 := 5k log k,A2 := logφ and A3 := k log 2.
Then, we take B := r > max{1, | − (r − 1)|, |d|}. According to Theorem 2.1, we get

10/φr−s > |Λ1| > exp{−G(1 + log(r)(5k log k)(logφ)(k log 2)},

where G = 1.4 (306) (34.5) (k2)(1 + log(k)), used the fact 1 + log k ≤ 3 log k for all k ≥ 2 and
1 + log r ≤ 2 log r for all r ≥ 4, we obtain

(r − s) logφ < 2.1 · 1012k4(log k)2(log r). (16)

Again, using (4) and (5), we can write Eq. (1) as

fk(φ)φ
r−1(1 + (2φ− 1)φs−r)− 3 · 2d = −ek(r)− ek(s)± 1.
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Taking the absolute value and dividing both sides by fk(φ)φr−1(1 + (2φ− 1)φs−r), we obtain

|Λ2| =
∣∣∣∣ 3 · 2dφ−(r−1)

fk(φ)(1 + (2φ− 1)φs−r)
− 1

∣∣∣∣ < 3

fk(φ)φr−1(1 + (2φ− 1)φs−r)
<

12

φr
. (17)

As in the previous case, it can be seen that t = 3. We take

(Υ1, b1) :=
(
3/fk(φ)(1 + (2φ− 1)φs−r), 1

)
, (Υ2, b2) := (φ,−(r − 1)) , (Υ3, b3) := (2, d) .

Thus, we have D := [L,Q] = k, B := r, A2 := logφ, A3 := k log 2. We shall estimate
h(Υ1) to determine A1. From (16), (3), and the properties of the logarithmic height, we deduce
the following:

h(Υ1) ≤ log 18 + 3 log k + (r − s)
logφ

k
< 2.5 · 1012k3(log k)2(log r).

Therefore, we can take A1 := 2.5 · 1012k4(log k)2(log r). Thus, similar to the previous
argument, it is clear that Λ2 ̸= 0. By Theorem 2.1, we get

12/φr > |Λ2| > exp{−G(1 + log(r)(2.5 · 1012k4(log k)2(log r))(logφ)(k log 2)},

where G = 1.4 (306) (34.5) (k2)(1 + log k). It can be observed that

r logφ < 1.1 · 1024k7(log k)3(log r)2.

After simplifying the calculation, we obtain r/(log r)2 < 2.7 · 1024k7(log k)3. Applying Lemma 2.2,
we can put S = 2.7 · 1024k7(log k)3, L = r and c = 2, and we get

r < 22(2.7 · 1024k7(log k)3)(log(2.7 · 1024k7(log k)3))2 < 8.2 · 1028k7(log k)5.

In the above calculation, we used the fact that 56.3 + 7 log k + 3 log log k < 87 log k for all
k ≥ 2.

3.2.3 Absolute upper bound of r on k

In this case, we aim to find the following lemma.

Lemma 3.3. The Eq. (1) has no non-negative integer solutions, where r ≥ k + 2 with k > 340.

Proof. Now, assume that k > 340, thus we have s < r < 8.2 · 1028k7(log k)5 < 2k/2. From
Lemmas 2.4 and 2.5 together with Eq. (1), we deduce that∣∣2r−2(1 + 3 · 2s−r)− 3 · 2d

∣∣ ≤ 2r−2|ζr|+ 3 · 2s−2|ζs|+ 1.

Dividing by 2r−2, we get∣∣(1 + 3 · 2s−r)− 3 · 2d−(r−2)
∣∣ < 2

2k/2
+

3 · 2s−r

2k/2
+

1

2r−2
<

4.5

2k/2
,

where we used the fact that r ≥ k + 2 implies that k ≤ r − 2. It can be seen that the above
inequality is not possible for d < r since we have 0.125 <

∣∣(1 + 3 · 2s−r)− 3 · 2d−(r−2)
∣∣.

Nevertheless, the right-hand side is very small because k > 340. Therefore, Eq. (1) has no
solutions where k > 340.
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3.2.4 Reducing the bound of r on k

Let χ1 := log(Λ1+1) = −(r−1) logφ+d log 2+log
(

3
fk(φ)

)
. In (15), we assume that r−s ≥ 6;

consequently, |Λ1| < 0.9. By Lemma 2.3, we obtain

|χ1| = −(log(1− 0.9)/0.9) · (10/φr−s) < 25.6/φr−s.

It can be seen that

0 < |−(r − 1) logφ+ d log 2 + log (3/fk(φ))| < 25.6 exp(−(r − s) logφ).

Applying Lemma 2.1, we have β := log (3/fk(φ)) and putting

c := 25.6, δ := logφ, ψ :=
log (3/fk(φ))

log 2
,

ϑ :=
logφ

log 2
, ϑ1 := − logφ, ϑ2 := log 2.

From (14), we obtain X0 := 2.9 · 1050 for all k ∈ [2, 340], which constitutes the upper bound
for r and s. Analysis utilizing the Maple program demonstrated that the maximum value of
1
δ
log( q2c

|ϑ2|X0
) is 321. Consequently, we determine that r − s ≤ 321.

Again, we let χ2 := −(r−1) logφ+d log 2+log
(
3/fk(φ)(1 + (2φ− 1)φ−(r−s))

)
. Assuming

r ≥ 7 in (17), we obtain |Λ2| < 0.7. According to Lemma 2.3, we get |χ2| < 20.6/φr. Therefore,
we have

0 <
∣∣−(r − 1) logφ+ d log 2 + log

(
3/fk(φ)(1 + (2φ− 1)φ−(r−s))

)∣∣ < 20.6 exp(−r logφ).

Again, by Lemma 2.1, we have β := log
(
3/fk(φ)(1 + (2φ− 1)φ−(r−s))

)
and putting

c := 20.6, δ := logφ, ψ :=
log
(

3
fk(φ)(1+(2φ−1)φ−(r−s))

)
log 2

,

ϑ :=
logφ

log 2
, ϑ1 := − logφ, ϑ2 := log 2.

As in the previous argument, we have X0 := 2.9 · 1050. Using the Maple program, we
determine that the maximum value of 1

δ
log( q2c

|ϑ2|X0
) is 328 for all r−s ∈ [1, 321]. Finally, searching

with Maple in the ranges 2 ≤ k ≤ 340, k+2 ≤ r ≤ 328 and 2 ≤ s ≤ r yields the set of solutions
in Theorem 1.1. Thus, Theorem 1.1 is proved. □

3.3 Main proof of Theorem 1.2

To complete the proof of the theorem, we present the following cases.

3.4 Case r ≤ k + 1, where k ≥ 2

In this case, we obtain the following lemma.

Lemma 3.4. The only non-negative integer solutions of the Diophantine equation (2) where
0 ≤ r ≤ k + 1 with k ≥ 2 are given by (r, d, y) ∈ {(0, 0, 3), (1, 0, 2), (2, 0, 2), (3, 0, 1), (4, 1, 2)}.

455



Proof. We consider the following cases.

Case 1: If r ∈ {0, 1}, then Eq. (2) becomes 3 · 2d = y and 3 · 2d = y + 1. It is easy to verify that
the only possible solutions of both equations are (r, d, y) ∈ {(0, 0, 3), (1, 0, 2)}.

Case 2: If 2 ≤ r ≤ k + 1, from (8) with Eq. (2), it can be seen that 2r−2 = 3 · 2d − y. Thus, only
the possible solutions, where y ∈ {0, 1, 2, 3} are (r, d, y) ∈ {(2, 0, 2), (3, 0, 1), (4, 1, 2)}.

3.5 Case r ≥ k + 2, where k ≥ 2

Now, we consider the following results.

3.5.1 The connection between r and d

We have r ≥ k + 2. Then combining inequality (6) with Eq. (2), we obtain

2d − 1 ≤ 3 · 2d − y = F (k)
r ≤ φr−1 < 2r−1 < 2r+1 − 1.

Therefore, we obtain d < r + 1.

3.5.2 Finding an upper bound of r in terms of k

The aim of this case is to prove the following lemma.

Lemma 3.5. If (r, d, y, k) is a solution in non-negative integers of Eq. (2) where r ≥ k + 2 with
k ≥ 2, then the following inequality holds

r < 4.7 · 1014k4(log(k))3. (18)

Proof. Combining (4) with Eq. (2), thus we get fk(φ)φr−1 − 3 · 2d = −y − ek(r). Taking the
absolute value, we deduce that

∣∣fk(φ)φr−1 − 3 · 2d
∣∣ < 3.5. Dividing both sides by fk(φ)φr−1

and using 1/2 < fk(φ) < 3/4, we get

|Λ3| =
∣∣∣∣3 · 2dφ−(r−1)

fk(φ)
− 1

∣∣∣∣ < 3.5

fk(φ)φr−1
<

14

φr
. (19)

Thus, we obtain the same calculation as that in the first part of Lemma 3.2. As d < r + 1, we
can choose B := r + 1. According to Theorem 2.1, we get

14/φr > |Λ3| > exp{−G(1 + log(r + 1))(5k log k)(logφ)(k log 2)},

where G = 1.4 (306) (34.5) (k2)(1 + log(k)). We used the fact 1 + log k ≤ 3 log k for all k ≥ 2

and 1 + log(r + 1) ≤ 2 log r for all r ≥ 4. After a simplified calculation, we obtained

r < 4.7 · 1014k4(log(k))3.

3.5.3 Absolute upper bound of r on k

The aim of this case is to demonstrate the following lemma.
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Lemma 3.6. The Eq. (2) has no non-negative integer solutions, where r ≥ k + 2 with k > 175.

Proof. Assuming that k > 175 , then we get r < 4.7 · 1014k4(log(k))3 < 2k/2. From Lemma 2.4
with Eq. (2) and dividing by 2r−2, it follows that∣∣1− 3 · 2d−(r−2)

∣∣ < 2

2k/2
+

3

2r−2
<

5

2k/2
,

where we used the fact that r ≥ k + 2 implies that k ≤ r − 2. Therefore, we observe that
0.25 <

∣∣1− 3 · 2d−(r−2)
∣∣. However, the right-hand side is exceedingly small for such k > 175,

which is inconsistent with the given conditions. Hence, (2) has no solutions for k > 175.

3.5.4 Reducing the bound of r on k

Let χ3 := −(r− 1) logφ+ d log 2+ log (3/fk(φ)). In (19), we assume that r ≥ 7; consequently,
|Λ3| < 0.82. By Lemma 2.3, we derive |χ3| < 29.3/φr. Thus

0 < |−(r − 1) logφ+ d log 2 + log (3/fk(φ))| < 29.3 exp(−r logφ).

Applying Lemma 2.1 for above inequality, we have β := log (3/fk(φ)) and putting

c := 29.3, δ := logφ, ψ :=
log (3/fk(φ))

log 2
, ϑ :=

logφ

log 2
, ϑ1 := − logφ, ϑ2 := log 2.

In (18), we can get X0 := 6.1 · 1025 for all k ∈ [2, 175], which is the upper bound for r.
Utilizing the Maple program, it was determined that 175 represents the maximum value of
1
δ
log( q2c

|ϑ2|X0
). Finally, we computed Eq. (2) in the ranges 2 ≤ k ≤ 175, k + 2 ≤ r ≤ 175, and

y ∈ {0, 1, 2, 3}, only possible solutions are obtained in Theorem 1.2. Thus, proved Theorem 1.2.

4 Conclusion

In this study, we examined the Diophantine equation F (k)
r +L

(k)
s = 3 ·2d±1, where F (k)

r and L(k)
s

denote the k-generalized Fibonacci and Lucas numbers, respectively. Applying advanced results
from transcendental number theory, particularly Matveev’s theorem on linear forms in logarithms,
alongside a continued fraction reduction method developed by de Weger, we achieved an explicit
classification of all such representations as Thabit numbers of the first and second kinds.

We established two principal theorems. Theorem 1.1 identifies all integer solutions to the
equation when r > s ≥ 2. Theorem 1.2 resolves the remaining cases where s ∈ {0, 1} by solving
the equation F (k)

r = 3 · 2d − y, for y ∈ {0, 1, 2, 3}. Key contributions include the establishment
of upper bounds for r in terms of k, the demonstration of the non-existence of solutions for large
k, and the computational reduction of these bounds to identify explicit solutions.
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