Krassimir T. Atanassov and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 335–339
DOI: 10.7546/nntdm.2025.31.2.335-339
Full paper (PDF, 135 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
![]()
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
Anthony G. Shannon
![]()
Warrane College, University of New South Wales
Kensington, NSW 2033, Australia
Abstract
In the present paper we will discuss the two Fibonacci-like sequences
![]()
with
and
![]()
with
, where
are arbitrary numbers.
Examples and explicit formulas for
and
are given.
Keywords
- Arbitrary order recurrence relation
- Combined sequence
- Fibonacci sequence
- Intersection
2020 Mathematics Subject Classification
- 11B39
References
- Atanassov, K. T., Atanassova, L. C., & Shannon, A. G. (2022). On combined 3-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 28(4), 758–764.
- Atanassov, K. T., Deford, D. R., & Shannon, A. G. (2015). Pulsated Fibonacci recurrences. The Fibonacci Quarterly, 52(5), 22–27.
- Atanassova, V. K., Shannon, A. G., & Atanassov, K. T. (2003). Sets of extensions of the Fibonacci sequence. Comptes rendus de l’Académie Bulgare des Sciences, 56(9), 9–12.
- Philippou, A. N. (1983). A note on the Fibonacci sequence of order k and the multinomial coefficients. The Fibonacci Quarterly, 21(2), 82–86.
- Shannon, A. G. (1976). Some number theoretic properties of arbitrary order recursive sequences. Bulletin of the Australian Mathematical Society, 14(1), 149–151.
- Shannon, A. G., Turner, J. C., & Atanassov, K. T. (1991). A generalized tableau associated with coloured convolution trees. Discrete Mathematics, 92, 329–340.
- Stein, S. K. (1962). The intersection of Fibonacci sequences. Michigan Mathematical Sequences, 9, 399–402.
- Subba Rao, K. (1953). Some properties of Fibonacci numbers – I. Bulletin of the Calcutta Mathematical Society, 46, 253–257.
- Williams, H. C. (1972). On a generalization of the Lucas functions. Acta Arithmetica, 20, 33–51.
Manuscript history
- Received: 30 March 2025
- Accepted: 17 May 2025
- Online First: 2 June 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Da Fonseca, C. M., & Saraiva, P. (2025). Alternating generalized Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 31(4), 829–838.
- Gryszka, K. (2025). Another six Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(3), 563-569.
- Atanassov, K. T., Atanassova, L. C., & Shannon, A. G. (2022). On combined 3-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 28(4), 758–764.
Cite this paper
Atanassov, K. T., & Shannon, A. G. (2025). Two Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 335-339, DOI: 10.7546/nntdm.2025.31.2.335-339.
