On combined 3-Fibonacci sequences

Krassimir T. Atanassov, Lilija C. Atanassova and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 758–764
DOI: 10.7546/nntdm.2022.28.4.758-764
Download PDF (145 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling,
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
“Acad. G. Bonchev” Str. Bl. 105, Sofia 1113, Bulgaria

Intelligent Systems Laboratory, “Prof. Asen Zlatarov” University
1 “Prof. Yakimov” Blvd., Burgas 8010, Bulgaria

Lilija C. Atanassova
Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences
“Acad. G. Bonchev” Str., Bl. 2, Sofia 1113, Bulgaria

Anthony G. Shannon
Warrane College, The University of New South Wales
Kensington, NSW 2033, Australia

Abstract

The term ‘combined’ sequence includes any of the ‘coupled’, ‘intercalated’ and ‘pulsated’ sequences. In this paper, k = 3, so new combined 3-Fibonacci sequences, \{\alpha_n \}, \{ \beta_n \}, \{ \gamma_n \}, are introduced and the explicit formulae for their general terms are developed. That is, there are three such sequences, each with a linear recurrence relation which contains terms from the other two. In effect, each such recurrence relation is second order, with two initial terms which specify the subsequent delineation of the terms of the sequences. The initial terms are, respectively, \langle \alpha_0, \alpha_1 \rangle = \langle 2a, 2d \rangle, \langle \beta_0, \beta_1 \rangle = \langle b,e \rangle and \langle \gamma_0, \gamma_1 \rangle = \langle 2c, 2f \rangle in turn. These result in neat inter-relationships among the three sequences, which can lead to intriguing connections with known sequences, and to a surprisingly simple graphical representation of the whole process. The references include a comprehensive cover of the pertinent literature on these aspects of recursive sequences particularly during the last seventy years.

A secondary goal of the paper is to put the disarray of this part of number theory into some semblance of order with a selection of representative references. This gives rise to a ‘combobulated sequence’, so-called because it restores partial order to a disarray of many papers into three classes, which are fuzzy in both their membership and non-membership because of their diverse and non-systematic derivations.

Keywords

  • Fibonacci sequence
  • 3-Fibonacci sequence
  • Combobulated sequence

2020 Mathematics Subject Classification

  • 11B39

References

  1. Ando, S., & Hayashi, M. (1997). Counting the number of equivalence classes of (m, F) sequences and their generalizations. The Fibonacci Quarterly, 35(1), 3–8.
  2. Atanassov, K. T. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362–365.
  3. Atanassov, K. T. (1995). Remark on a new direction for a generalization of the Fibonacci sequence. The Fibonacci Quarterly, 33(3), 249–250.
  4. Atanassov, K. T. (2013). Pulsating Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 19(3), 12–14.
  5. Atanassov, K. T. (2013). Pulsated Fibonacci sequence. Part 2. Notes on Number Theory and Discrete Mathematics, 19(4), (2013), 33–36.
  6. Atanassov, K. T. (2014). n-pulsated Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 20(1), 32–35.
  7. Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 24(2), 90–93.
  8. Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. Part 2. Notes on Number Theory and Discrete Mathematics, 24(3), 111–114.
  9. Atanassov, K. T. (2022). On two new combined 3-Fibonacci sequences. Part 3. Notes on Number Theory and Discrete Mathematics, 28(1), 143–146.
  10. Atanassov, K. T., Atanassova, L. C., & Sasselov, D. D. (1985). A new perspective to the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23(1), 21–28.
  11. Atanassov, K. T., Atanassova, V. K., Shannon, A. G., & Turner, J. C. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
  12. Atanassov, K. T., Deford, D. R., & Shannon, A. G. (2015). Pulsated Fibonacci recurrences. In: Anderson, P. G., Ballot, C., & Webb, W. (Eds). Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications, The Fibonacci Quarterly, 52(5), 22–27.
  13. Atanassov, K. T., Hlebarova, J., & Mihov, S. (1992). Recurrent formulas of the generalized Fibonacci and Tribonacci sequences. The Fibonacci Quarterly, 30(1), 77–79.
  14. Atanassov, K. T., & Shannon, A. G. (2016). Combined 3-Fibonacci sequences from a new type. Notes on Number Theory and Discrete Mathematics, 22(3), 5–8.
  15. Atanassov, K. T., & Shannon, A. G. (2020). On intercalated Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 26(3), 218–223.
  16. Atanassov, K. T., Shannon, A. G., & Turner, J. C. (1995). The generation of trees from coupled third order recurrence relations. In: Shtrakov, S., & Mirchev, I. (Eds.) Discrete Mathematics and Applications. Neofit Rilski University, Blagoevgrad, 46–56.
  17. Badshah, V., & Khan, I. (2009). New generalization of the Fibonacci sequence in case of 4-order recurrence equations. International Journal of Theoretical & Applied Sciences, 1(2), 93–96.
  18. Bicknell-Johnson, M. (2003). Stern diatomic array applied to Fibonacci representations. The Fibonacci Quarterly, 41(2), 169–180.
  19. Coons, M. (2018). Proof of Northshield’s conjecture concerning an analogue of Stern’s sequence for\mathbb Z[\sqrt{2}]. Australasian Journal of Combinatorics, 71(1), 113–120.
  20. Coons, M., & Shallit, J. (2011). Pattern sequence approach to Stern’s sequence. Discrete Mathematics, 311, 2630–2633.
  21. Frankl, P., & Wilson, R. M. (1981). Intersection theory with geometric consequences. Combinatorica, 1(4), 357–368.
  22. Georgiev, P. G., & Atanassov, K. T. (1996). On one generalization of the Fibonacci sequence. Part IV: Multiplicity roots of the characteristic equation. Notes on Number Theory and Discrete Mathematics, 2(4), 3–7.
  23. Gould, H. W. (1965). Non-Fibonacci numbers. The Fibonacci Quarterly, 3(3), 177–183.
  24. Gould, H. W. (1968). Up-down permutations. S.I.A.M. Review, 10, 225–226.
  25. Horadam, A. F. (1966). Generalization of two theorems of K. Subba Rao. Bulletin of the Calcutta Mathematical Society, 58(1), 23–29.
  26. Kiss, P. (1982). On common terms of linear recurrences. Acta Mathematica Academiae Scientiarum Hungarica, 40(1/2), 119–123.
  27. Krishna, H. V. (1973). A note on number quartets. The Mathematics Student, 40(1), 1.
  28. Laxton, R. R. (1974). On a problem of M. Ward. The Fibonacci Quarterly, 12(1), 41–44.
  29. Lee, J.-Z., & Lee, J.-S. (1987). Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 25(2), 111–117.
  30. Lehmer, D. H. (1929). On Stern’s diatomic sequence. American Mathematical Monthly, 36(1), 59–67.
  31. Northshield. S. (2015). Three analogues of Stern’s diatomic sequence. In: Anderson, P.G., Ballot, C., & Webb, W. (Eds.). Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications. The Fibonacci Quarterly, 52(5), 168–186.
  32. Rao, K. S. (1954). Some properties of the Fibonacci numbers–I. Bulletin of the Calcutta Mathematical Society, 46, 253–257.
  33. Rao, K. S. (1959). Some properties of the Fibonacci numbers–II. The Mathematics Student, 27(1), 19–23.
  34. Sedgewick, R., & Flajot, F. (2013). An Introduction to the Analysis of Algorithms. Addison-Wesley, Boston, MA, Ch.2.
  35. Shannon, A. G. (1983). Intersections of second order linear recursive sequences. The Fibonacci Quarterly, 21(1), 6–12.
  36. Shannon, A. G., Turner, J. C., & Atanassov, K. T. (1991). A generalized tableau associated with coloured convolution trees. Discrete Mathematics, 92, 329–340.
  37. Spickerman, W., & Creech, R. (1997). The (2, T) generalized Fibonacci sequences. The Fibonacci Quarterly, 35(4), 358–360.
  38. Spickerman, W., Creech, R., & Joyner, R. (1992). On the (2, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 30(4), 310–314.
  39. Spickerman, W., Creech, R., & Joyner, R. (1993). On the structure of the set of difference systems defining the (3, F) generalized Fibonacci sequence. The Fibonacci Quarterly, 31(4), 333–337.
  40. Spickerman, W., Creech, R., & Joyner, R. (1995). On the (3, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 33(1), 9–12.
  41. Stein, M. A. (1858). Uber eine zahlentheoretische Funktion. Journal für die reine und angewandte Mathematik, 55, 193–220.
  42. Stein, S. K. (1962). The intersection of Fibonacci sequences. Michigan Mathematics Journal, 9(4), 399–402.
  43. Ward, M. (1955). The laws of apparition and repetition of primes in a cubic recurrence. Transactions of the American Mathematical Society, 79(1), 72–90.

Manuscript history

  • Received: 20 July 2022
  • Revised: 27 October 2022
  • Accepted: 14 November 2022
  • Online First: 16 November 2022

Related papers

Cite this paper

Atanassov, K. T., Atanassova, L. C. & Shannon, A. G. (2022). On combined 3-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 28(4), 758-764, DOI: 10.7546/nntdm.2022.28.4.758-764.

Comments are closed.