Gabriele Di Pietro and Marco Ripà
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 54–68
DOI: 10.7546/nntdm.2025.31.1.54-68
Full paper (PDF, 254 Kb)
Details
Authors and affiliations
Gabriele Di Pietro
![]()
Roseto degli Abruzzi (TE), Italy
Marco Ripà
![]()
World Intelligence Network
Rome, Italy
Abstract
The present paper aims to generalize the Knight’s tour problem for
-dimensional grids of the form
by considering other fairy chess leapers. Accordingly, we constructively show the existence of closed tours in
(
times) chessboards concerning the Wazir, the Threeleaper, and the Zebra, for all
. This extends the recent discovery of Euclidean Knight’s tours on these grids to the above-mentioned leapers, opening a new research direction on fairy chess leapers performing fixed-length jumps on regular grids.
Keywords
- Fairy chess
- Euclidean tour
- Knight’s tour
- Zebra’s tour
- Hamiltonian path
2020 Mathematics Subject Classification
- 05C12
- 05C38
- 05C57
References
- Brown, A. J. (2017). Knight’s Tours and Zeta Functions (MS thesis). San José State University, p. 3.
- Cancela, H., & Mordecki, E. (2015). On the number of open knight’s tours. Preprint. arXiv.org, Available online at: https://arxiv.org/abs/1507.03642.
- Di Pietro, G., & Ripà, M. (2024). Threeleaper’s Euclidean tour on the
grid – data file supporting Euclidean tours in fairy chess. Zenodo.org. Available online at: https://zenodo.org/records/11199717. - Di Pietro, G., & Ripà, M. (2024). Zebra’s Euclidean tour on the
grid – data file supporting Euclidean tours in fairy chess. Zenodo.org. Available online at: https://zenodo.org/records/11490687. - Dickins, A. S. M. (1969). A Guide to Fairy Chess. The Q Press, Richmond, Surrey.
- Dvořák, T., & Gregor, P. (2007). Hamiltonian paths with prescribed edges in hypercubes. Discrete Mathematics, 307(16), 1982–1998.
- Euler, L. (1759). Solution dune question curieuse que ne paroit soumise à aucune analyse. Mémoires de l’académie des sciences de Berlin, 15, 310–337.
- FIDE (2022). FIDE Handbook E/01 – Laws of Chess. FIDE.com, Available online at: https://www.fide.com/FIDE/handbook/LawsOfChess.pdf.
- Harary, F., Hayes, J. P., & Wu, H.-J. (1988). A survey of the theory of hypercube graphs. Computers & Mathematics with Applications, 15(4), 277–289.
- Hooper, D., & Whyld, K. (1996). Knight’s Tour. Oxford University Press, Oxford, p. 204.
- Ripà, M. (2023). Metric spaces in chess and international chess pieces graph diameters. Preprint. arXiv.org. Available at: https://arxiv.org/abs/2311.00016.
- Ripà, M. (2024). Proving the existence of Euclidean knight’s tours on n × n × ··· × n chessboards for n < 4. Notes on Number Theory and Discrete Mathematics, 30(1), 20–33.
- Satyadev, C. (1991). Kavyalankara of Rudrata, with Hindi translation. Delhitraversal: Parimal Sanskrit Series No. 30. Parimal Publications, Delhi.
Manuscript history
- Received: 13 June 2024
- Revised: 31 March 2025
- Accepted: 1 April 2025
- Online First: 2 April 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Ripà, M. (2024). Proving the existence of Euclidean knight’s tours on n × n × ··· × n chessboards for n < 4. Notes on Number Theory and Discrete Mathematics, 30(1), 20–33.
Cite this paper
Di Pietro, G., & Ripà, M. (2025). Euclidean tours in fairy chess. Notes on Number Theory and Discrete Mathematics, 31(1), 54-68, DOI: 10.7546/nntdm.2025.31.1.54-68.
