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Abstract: The present paper aims to generalize the Knight’s tour problem for k-dimensional
grids of the form {0, 1}k by considering other fairy chess leapers. Accordingly, we constructively
show the existence of closed tours in 2× 2× · · ·× 2 (k times) chessboards concerning the Wazir,
the Threeleaper, and the Zebra, for all k ≥ 15. This extends the recent discovery of Euclidean
Knight’s tours on these grids to the above-mentioned leapers, opening a new research direction
on fairy chess leapers performing fixed-length jumps on regular grids.
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1 Introduction

The famous Knight’s tour problem [2] asks to perform, on a given chessboard, a sequence of
moves of the Knight, the trickiest chess piece, that visits each square exactly once.

The earliest known reference to the Knight’s tour problem dates back to the 9th century AD.
In Rudrata’s Kavyalankara (see [13]) the pattern of a Knight’s tour has been presented as an
elaborate poetic figure. The poet and philosopher Vedanta Desika in his poem Paduka Sahasram
(14th century) has composed two Sanskrit verses where the second one can be derived from the
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first by performing a Knight’s tour in a 4× 8 board. One of the first known mathematicians who
investigated the Knight’s tour problem was Leonhard Euler [7]. Later, in 1823, van Warnsdorff
described the first procedure to complete a Knight’s tour. At the present time, many other
scientific papers have been published around this puzzle and its variations [1, 10]. Moreover,
if it is possible to reach the starting square with an additional Knight move after the last one of a
valid Knight’s tour, the resulting path is closed (Hamiltonian tour); otherwise, the Knight’s tour
is open as each square has been visited exactly once but the starting square is not reachable at the
end.

In 2024, the paper [12] examined the Knight’s tour problem for some k-dimensional grids

C(n, k) := {0, 1, . . . , n− 1}k, (1)

where k ∈ N+ and

{0, 1, . . . , n− 1}k = {{0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} × · · · × {0, 1, . . . , n− 1}},︸ ︷︷ ︸
k times

(2)

providing the necessary and sufficient condition for the existence of a closed Knight’s tour on any
C(2, k).

Trivially, |C(n, k)| = nk and so, given i ∈ {0, 1, . . . , nk}, the vertex Vi ∈ C(n, k) is identified
by the k-tuple of Cartesian coordinates (x1, x2, . . . , xk) : x1, x2, . . . , xk ∈ {0, 1, . . . , n − 1}.
Thereby, on the given grid, each Knight’s move takes place by moving the piece from one vertex
to another. Then, it is natural to associate a Euclidean Knight’s tour to a proper sequence of all
the elements of {V1, V2, . . . , Vnk} so that the Euclidean distance between any two consecutive
vertices, Vi and Vj:=i+1, remains the same by construction.

It is worth pointing out that the FIDE Handbook (see [8]) uses the superlative of near as
a criterion to state the official Knight move rule. Consequently, it is common sense to assume
also that, on the chessboard, any move that covers a distance of (exactly)

√
22 + 12 =

√
5 units

between the centers of the starting and the ending square constitutes a Knight’s move. Thus, a
Knight’s jump, mathematically speaking, is the connection between two vertices, belonging to
the grid C(n, k), which are at a Euclidean distance of

√
5.

Accordingly, let us define the distance between the two vertices Vi = (x1, x2, . . . , xk) and
Vj = (y1, y2, . . . , yk) through this Euclidean distance ∥Vi − Vj∥ : C(n, k)→ R as

∥Vi − Vj∥ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xk − yk)2. (3)

More specifically, for the Euclidean k-Knight, the distance ∥Vi − Vj∥ is equal to
√
5.

At this point, it is useful to introduce the following definition.

Definition 1.1. Given a Euclidean tour on C(n, k) and its associated distance d : C(n, k) → R,
a given polygonal chain PC(n, k) indicates the ordered sequence of all vertices in C(n, k)

associated to a Euclidean tour such that the distance between the first vertex and the last one of
the tour is d. Conversely, PO(n, k) indicates a valid Euclidean tour where the distance between
the first and the last vertex is not equal to d.

55



Now, A Guide to Fairy Chess (see [5]) allows us to extend the Euclidean chess tour concept
to the fascinating fairy chess pieces, listed in Table 1.

Table 1. Fairy chess’ leapers.

a

b
0 1 2 3 4 . . .

0 Zero (0) Wazir (W) Dabbaba (D) Threeleaper (T) Fourleaper
1 Wazir (W) Ferz (F) Knight (N) Camel (C) Giraffe
2 Dabbaba (D) Knight (N) Alfil (A) Zebra (Z) Stag
3 Threeleaper (T) Camel (C) Zebra (Z) Tripper (G) Antelope

4 Fourleaper Giraffe Stag Antelope Commuter
...

These chess pieces are known as the leapers since they jump from one chessboard square to
another at a given (fixed) distance. For instance, the Euclidean Knight is described as (1, 2)-leaper
(or (2, 1)-leaper); in fact,

√
22 + 12 =

√
12 + 22 =

√
5, as stated above. Furthermore, from

the (a, b) pair in Table 1, it is clear that the canonical move of every fairy chess piece in the
k-dimensional grid C(n, k) is obtained by adding or subtracting a from one of the k Cartesian
coordinates of the starting vertex and, simultaneously, adding or subtracting b to another of the
remaining k − 1 elements of the mentioned k-tuple. In this paper, we refer to any (a, b) pair in
Table 1 as an (a, b)-moving rule.

Thus, assuming
√
a2 + b2 as our distance criterion, other noncanonical movements are

allowed in C(n, k), (i.e., for each k > 4, the (1, 1, 1, 1, 1)-moving rule is another possible move
of the (2, 1)-leaper called Knight since

√
12 + 12 + 12 + 12 + 12 =

√
5).

This definition is justified by Article 3.6 of FIDE Handbook [8] since: “The knight may move
to one of the squares nearest to that on which it stands but not on the same rank, file, or diagonal”.

Let the starting vertex V0 ≡ (0, 0, 0, 0, 0, 0) of C(2, 6) be given. The (1, 1, 1, 1, 1)-moving
rule is performed by adding or subtracting 1 to five of the Cartesian coordinates of the starting
vertex (i.e., we apply the (1, 1, 1, 1, 1)-moving rule to (0, 0, 0, 0, 0, 0) in order to reach any of
the vertices (1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 0, 1), (1, 1, 1, 0, 1, 1), (1, 1, 0, 1, 1, 1), (1, 0, 1, 1, 1, 1), and
(0, 1, 1, 1, 1, 1)).

Notably, the uniqueness of the Euclidean fairy chess pieces is intrinsically maintained by
their canonical versions. For instance, both the (0, 5)-leaper and the (3, 4)-leaper share jumps of√
25 = 5, and this means that in a C(2, 26) grid their moves are the same, but in C(6, 2) they

jump on different vertices because they have the (0, 5)-moving rule and the (3, 4)-moving rule,
respectively. In detail, starting from (0, 0) ∈ C(6, 2), the (0, 5)-leaper alternatively moves to
(5, 0) or (0, 5), while the (3, 4)-leaper can only reach the vertex (3, 4) or the vertex (4, 3).

Thus, we note that (usually) the fairy chess pieces have multiple options.
This is certainly the case of the (2, 3)-leaper, the notable Zebra, for which the given jump

length of
√
32 + 22 =

√
13 makes it possible to perform the (2, 1, 1, 1, 1, 1, 1, 1, 1, 1)-moving

rule, the (2, 2, 1, 1, 1, 1, 1)-moving rule, the (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule, the
(2, 2, 2, 1)-moving rule, and the (3, 1, 1, 1, 1)-moving rule.
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To give an example with the (2, 2, 2, 1)-moving rule in C(2, 5), starting from (0, 0, 0, 0, 0)

(as usual), the Zebra can alternatively reach (2, 0, 1, 2, 2, 0) or (0, 2, 2, 2, 0, 1). Anyway, in the
present paper, we only consider Hamiltonian Euclidean tours in C(2, k) and consequently, for
instance, only the (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule is available for a (2, 3)-leaper in
order to move on a C(2, k) grid, for any k ≥ 13. Obviously, for each k ≤ 13, it is not possible to
cover all the vertices of the C(2, k) grid with the special move that requires sums / subtractions
of thirteen addends.

Hence, we can refine Definition 1.1 as follows.

Definition 1.2. Given a Euclidean tour on C(n, k) and a generic fairy chess leaper L with
associated distance d : C(n, k) → R, the polygonal chain PL

C (n, k) indicates the ordered
sequence of all vertices in C(n, k) covered by L such that the distance between the last vertex
and the first one is d. Conversely, PL

O (n, k) indicates a valid Euclidean tour of the leaper L where
the distance between the first and last vertex is not equal to d.

It is notable that, in Definition 1.2, the subscript C is referred to a closed Euclidean tour, and
O is referred to an open one. Additionally, the closed path can be named Hamiltonian tour on
C(n, k) for its striking similarity to the Hamiltonian cycle and, conversely, if the Euclidean tour
is open, the open Euclidean tour denomination can be used. However, looking at Table 1, we
can replace the apex L with any other leaper character (e.g., for the Knight case, we have the
polygonal chains PN

C (n, k) and PN
O (n, k)).

Due to computing power limitations, the present paper only looks for Wazir’s, Threeleaper’s,
and Zebra’s Euclidean Hamiltonian tours, and then we only need the PW

C (n, k), P T
C (n, k), and

PZ
C (n, k) notations.

2 Parity of vertices

Subsection 4.1 of “Metric spaces in chess and international chess pieces graph diameters” (see
[11]) distinguishes between even and odd vertices of C(n, k), as follows: given a vertex V ≡
(x1, x2, . . . , xk) of a k-dimensional grid C(n, k), where x1, x2, . . . , xk ∈ N, assuming also m ∈
N, it is possible to define V even if and only if

k∑
j=1

xj = 2m, (4)

whereas we define V to be odd, otherwise.

Lemma 2.1. Let n, k, x1, x2, . . . , xk ∈ N and assume that V ≡ (x1, x2, . . . , xk) is an even vertex
of the grid C(n, k). Then, the number of the odd coordinates of V is even.

Proof. Let X := {x1, x2, . . . , xk} be the whole set of the k coordinates of V , the given vertex of
C(n, k). If we denote as {d1, d2, . . . , ds} the set of the odd coordinates of X , and as {p1, p2, . . . , pt}
the set of the even coordinates of X , then s+ t = k ∈ N follows by construction.
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Since V is an even vertex by hypothesis, the following equality holds.

k∑
j=1

xj =
s∑

j=1

dj +
t∑

j=1

pj = 2m (m ∈ N) (5)

and, secondly,
∑t

j=1 pj = 2h for each h ∈ N with h ≤ m.
Hence,

s∑
j=1

dj = 2m− 2h = 2(m− h). (6)

Therefore, s is even and this completes the proof.

Similarly, we can distinguish between even and odd leaper moves by invoking the
previously stated distance criterion for the fairy chess pieces. In fact, given a leaper and its
(x1, x2, . . . , xk′)-moving rule in a k-dimensional grid C(n, k), where k′ ≤ k and m ∈ N, we
define the (x1, x2, . . . , xk′)-moving rule as even if and only if

k′∑
j=1

xj = 2m, (7)

otherwise we define the (x1, x2, . . . , xk′)-moving rule to be odd.

Lemma 2.2. Let x1, x2, . . . , xk, k
′, k, n ∈ N, k′ ≤ k, and assume that

√
x2
1 + x2

2 + · · ·+ x2
k′

indicates the Euclidean distance between a pair of vertices of the given C(n, k) grid. The
(x1, x2, . . . , xk′)-moving rule is even if and only if x2

1 + x2
2 + · · · + x2

k′ is even, whereas the
(x1, x2, . . . , xk′)-moving rule is odd if and only if x2

1 + x2
2 + · · ·+ x2

k′ is also odd.

Proof. If the radicand of
√
x2
1 + x2

2 + · · ·+ x2
k′ is even, it is notable that for any m ∈ N,

x2
1 + x2

2 + · · ·+ x2
k′ = 2m

⇒(x1 + x2 + · · ·+ xk′)(x1 + x2 + · · ·+ xk′)− 2
k′∑
i=1

k′∑
j=1

xixj = 2m

⇒(x1 + x2 + · · ·+ xk′)(x1 + x2 + · · ·+ xk′) = 2m− 2
k′∑
i=1

k′∑
j=1

xixj.

In the above, we observe that the right-hand side is even while the left-hand side is the product
of (x1+x2+ · · ·+xk′) by itself. Hence, if this product is even, the quantity (x1+x2+ · · ·+xk′)

is also even. On the other hand, if we assume the aforementioned product to be odd, it follows
that (x1+x2+ · · ·+xk′) should also be odd. Conversely, since the (x1+x2+ · · ·+xk′)-moving
rule is (alternatively) even or odd, the radicand x2

1 + x2
2 + · · ·+ x2

k′ can consistently be written by
even or odd terms as

(x1 + x2 + · · ·+ xk′)(x1 + x2 + · · ·+ xk′)− 2
k′∑
i=1

k′∑
j=1

xixj,

and this proves the present lemma.
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Accordingly, considering the leapers included in Table 1 and their possible (x1, x2, . . . , xk′)-
moving rules for given n× n× · · · × n grids C(n, k), Theorem 2.1 follows.

Theorem 2.1. Let n, k ∈ N − {0, 1} so that the k-dimensional grid C(n, k) is given. Then,
consider the (a, b)-leaper in C(n, k) such that a+b is even. If the (a, b)-leaper starts from an even
starting vertex, it can only visit (some of) the ⌈nk

2
⌉ even vertices, otherwise, if the (a, b)-leaper

starts from an odd starting vertex, it can only visit (some of) the ⌊nk

2
⌋ odd vertices.

Proof. There are nk vertices in C(n, k). Consequently, the number of even and odd vertices is
⌈nk

2
⌉ and ⌊nk

2
⌋, respectively. Then, we only need to prove that each (a, b)-leaper such that a+ b is

even can only visit even vertices if the piece is initially placed on an even vertex, and vice versa.
This implies that the maximum cardinality of each set of vertices belonging to any even/odd
(a, b)-leaper tour which satisfies the above cannot exceed the number of even/odd vertices of
{0, 1, . . . , n− 1}k.

Let us call d1, d2, . . . , ds the odd coordinates of a given vertex of C(n, k), and conversely let
p1, p2, . . . , pt indicate the even coordinates of the same vertex (s+t = k follows by construction).
Without loss of generality, assume that the starting vertex, V0 ≡ (d1, d2, . . . , ds, p1, p2, . . . , pt), is
even so that, by Lemma 2.1, the number s of the odd coordinates of V0 is even.

By invoking Lemma 2.2, it follows that if a+b is even, then the jumping length characterizing
our (a, b)-leaper is

√
a2 + b2, which is also an even number. In general, every linear combination

d̃1, d̃2, . . . , d̃s′ , p̃1, p̃2, . . . , p̃t′ associated to the same distance is even, since

a2 + b2 = d̃1
2
+ d̃2

2
+ · · ·+ d̃s′

2
+ p̃1

2 + p̃2
2 + · · ·+ p̃t′

2,

where s′, t′ ∈ N and s′ is even, while d̃1, d̃2, . . . , d̃s′ are the odd coordinates, and p̃1, p̃2, . . . , p̃t′

are the even ones.
We now observe how we can apply the (d̃1, d̃2, . . . , d̃s′ , p̃1, p̃2, . . . , p̃t′)-moving rule to move

a fairy chess piece from its starting spot. Since the even coordinates p̃1, p̃2, . . . , p̃t′ do not affect
the parity of the starting vertex, given the fact that d1 + p = d2 and p1 + p = p2 hold for any
odd d1, d2 ∈ N and for every even p, p1, p2 ∈ N, we are free to consider only the d̃1, d̃2, . . . , d̃s′

coordinates.
At this point, we have to distinguish between three cases, depending on how the odd

coordinates d̃1, d̃2, . . . , d̃s′ are applied to V0.

1. First of all, let us assume that d̃1, d̃2, . . . , d̃s′ only change the values of s′ elements of the
set {d1, d2, . . . , ds} (the odd coordinates of V0) and, in particular, let s′ be strictly smaller
than s. It follows that s′ elements of the set {d1, d2, . . . , ds} become even. Since s − s′ is
even, the sum of the remaining s − s′ odd coordinates is also even, and, after making the
(a, b)-leaper move, we have that the reached vertex is also even.
On the other hand, if s′ = s, all the coordinates d1, d2, . . . , ds of the reached vertex become
even and, consequently, the considered fairy chess piece lands on an even vertex.

2. Secondly, let us assume that d̃1, d̃2, . . . , d̃s′ change only the values of s′ coordinates among
p1, p2, . . . , pt (i.e., the even coordinates of V0). Since s′ is even, s′ even elements of
{p1, p2, . . . , pt} become odd, so that their sum is even, and thus the reached vertex is even,
as well.
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3. Lastly, we assume that d̃1, d̃2, . . . , d̃s′ change the values of a subset of the coordinates
{d1, d2, . . . , ds, p1, p2, . . . , pt} of V0. For example, without loss of generality, we are
allowed to assume that, for any pair of nonnegative integers (s1, s2), s′1 + s′2 = s′ so that s′1
odd coordinates of {d1, d2, . . . , ds} become even and s′2 even coordinates of {p1, p2, . . . , pt}
become odd. Since s′ is even, we distinguish two subcases: the one where both s′1 and s′2
are even, and the other where both s′1 and s′2 are odd integers.

(a) Let s′1 < s and s′1, s
′
2 be even. It follows that the sum of the remaining s − s′1 odd

coordinates of {d1, d2, . . . , ds} is even and the sum of s′2 odd coordinates is also even
(given the fact that s′2 is even so that the selected fairy chess piece lands on an even
vertex of C(n, k)). Alternatively, if s′1 = s, it follows that all the s odd coordinates
d1, d2, . . . , ds become even, and then the reached vertex is even.

(b) Let s′1 < s and s′1, s
′
2 be odd. We have that the sum of the remaining s − s′1 odd

coordinates of {d1, d2, . . . , ds} is odd and the sum of s′2 odd coordinates is also odd.
As a result, since the sum of two odd numbers is even, we have that the landing spot
of the considered (a, b)-leaper is, again, an even vertex.

A similar reasoning can be made as the starting vertex V0 is odd, finally proving the theorem.

Applying Theorem 2.1 to the pieces included in Table 1, we conclude that Hamiltonian fairy
chess tours are possible for Wazir, Threeleaper, Knight, Giraffe, Zebra, Antelope, and so forth.

In detail, we know that such Knight’s tours are always possible in C(2, k) as k becomes
sufficiently large [12], while, considering the same family of grids, the currently available
computing power has allowed us to explore the Wazir’s tours, the Threeleaper’s tours, and even
the Zebra’s ones.

3 Hamiltonian tours of fairy chess

In 2007, Dvořák and Gregor proved the existence of Hamiltonian paths in hypercubes [6,9]. Here
we show a constructive proof for the Wazir’s tour.

Theorem 3.1. A Hamiltonian Euclidean Wazir’s tour PW
C (2, k) exists for each positive integer k.

Proof. Trivially, PW
C (2, 1) := (0) → (1) describes a Wazir’s tour for C(2, 1), and we note that

this tour is also Hamiltonian (since the Euclidean distance between the vertices (0) and (1) is√
02 + 12 =

√
1 = 1). Then, it is possible to lift PW

C (2, 1) from C(2, 1) to C(2, 2) adding a
new coordinate at the right-hand side in order to construct PW

C1
(2, 2) := (0, 0) → (1, 0) and

PW
C2
(2, 2) := (0, 1)→ (1, 1).
Hence, by reverting the tour PW

C2
(2, 2), we get ˆPW

C2
(2, 2) := (0, 1)← (1, 1) and so, connecting

the ending vertex of PW
C1
(2, 2) with the starting vertex of ˆPW

C2
(2, 2), the new Wazir’s tour

PW
C (2, 2) := (0, 0)→ (1, 0)→ (1, 1)→ (0, 1) is finally constructed. Using the same procedure,

we consequently get the Wazir’s tour PW
C (2, 3) := (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (0, 1, 0)→

(0, 1, 1) → (1, 1, 1) → (1, 0, 1) → (0, 0, 1), and then we can repeat the same process, for each
k > 3.
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We provide here a Hamiltonian Threeleaper’s tour for the C(2, 11) grid and a Hamiltonian
Zebra’s tour for the C(2, 15) grid. Due to their length, we have decided to upload the solutions
P T
C (2, 11) and PZ

C (2, 15) on Zenodo (choosing the binary representation of the vertices with the
aim of highlighting the patterns arising from the representation of the given polygonal chains).

For instance, the binary representation of the vertex (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0) ∈
C(2, 15) is 000000000110010, a number obtained by listing the mentioned coordinates from left
to right.

Hence, about the Threeleaper, we have the following result.

Theorem 3.2. A Hamiltonian Euclidean Threeleaper’s tour P T
C (2, k) exists for each integer

k ≥ 11.

Proof. Firstly, only the (1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule can be applied to the context of a
Euclidean Threeleaper in C(2, k), and thus the condition k ≥ 9 is mandatory in order to perform
any Threeleaper jump inside the given grid.

However, as k = 9, we observe that the Threeleaper cannot visit all the vertices of C(2, 9)

(e.g., if the starting vertex is V0 ≡ (0, 0, 0, 0, 0, 0, 0, 0, 0), then the only reachable vertex is
V1 ≡ (0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1) = (1, 1, 1, 1, 1, 1, 1, 1, 1)

and now, using again the (1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule, it is only possible to subtract every
1 from the coordinates of V1, coming back to V0).

On the other hand, for k = 11, a Hamiltonian tour is provided by the polygonal chain

P T
C (2, 11) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1),

described in the data file [3]; there, the Euclidean distance between the final and the starting
vertex is

∥(0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1)− (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∥ =
√
9,

and this proves the existence of a Hamiltonian Threeleaper’s tour in C(2, 11). We point out that
each vertex of an 11-face of a 12-cube is connected to some vertices on the opposite 11-face of the
same 12-cube by an equal number of minor diagonals. Given this consideration, we can take the
solution for the k = 11 case and duplicate it on the opposite 11-face of the mentioned 12-cube.

Now, it is possible to mirror / rotate the 11-face in order to connect the endpoints of both the
covering paths of the two 11-faces through as many diagonals of (Euclidean) length

√
9.

In detail, we can extend the k = 11 solution

P T
C (2, 11) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1)

to k = 12 as follows.

1. In order to lift P T
C (2, 11) from C(2, 11) to C(2, 12), we need to duplicate it as

P T
C1
(2, 12) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)→ · · · → (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0)
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and

P T
C2
(2, 12) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1),

adding a new coordinate at the right-hand side.

2. Now we have to mirror / rotate the 11-face joined by the polygonal chain P T
C2
(2, 12); to

achieve this goal, it is sufficient to start from the left-hand side, switch the first 9 − 1

coordinates of P T
C2
(2, 12), and finally obtain the new polygonal chain

P̃ T
C2
(2, 12) := (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)→

(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)→ · · · → (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1).

3. Naturally, P̃ T
C2
(2, 12) is a Hamiltonian path because the Euclidean distance between the last

and the first vertex is
√
9, as the distance between any two consecutive vertices of the given

polygonal chain.

4. Finally, we can connect the 11-face of the 12-cube to the opposite 11-face by considering
the reverse path of P̃ T

C2
(2, 12), which is defined by

P̂ T
C2
(2, 16) := (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)←

(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)← · · · ← (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1).

This is correct since the polygonal chain

P T
C (2, 12) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)→ · · · → (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0)→
(1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)→ · · · → (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)→

(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)

is obtained by connecting the ending point of P T
C1
(2, 12) to the starting point of P̂ T

C2
(2, 12).

Consequently, P T
C (2, 12) is a Hamiltonian Threeleaper tour since the Euclidean

distance between the starting vertex (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and the ending vertex
(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1) is

√
9, while the polygonal chains P T

C1
(2, 12) and P̂ T

C2
(2, 12) are

Hamiltonian by construction.
Then, the described process can be iterated to extend the 12-cube solution to the 13-cube, and

so forth.
Therefore, for each C(2, k) grid such that k ≥ 11, we have shown the existence of a

Hamiltonian Threeleaper’s tour, and this concludes the proof.

With regard to the Zebra, we can prove a similar result.
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Theorem 3.3. A Hamiltonian Euclidean Zebra’s tour PZ
C (2, k) exists for each integer k ≥ 15.

Proof. Firstly, only the (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule can be applied to the context
of a Euclidean Zebra in C(2, k), and thus the condition k ≥ 13 is mandatory in order to perform
any Zebra jumps inside the given grid.

But then again (as for the case k = 9 with reference to the Threeleaper tour), as k = 13 is
given, we should note that the Zebra cannot visit all the vertices of C(2, 13) (e.g., if the starting
vertex is V0 ≡ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), then the only reachable vertex is

V1 ≡ (0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1, 0 + 1)

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

and now, applying the (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)-moving rule once more, it is only possible
to subtract every 1 from the coordinates of V1, coming back to V0).

On the other hand, for the k = 15 case, a Hamiltonian tour is provided by the polygonal chain

PZ
C (2, 15) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)

described in the data file [4]; there, the Euclidean distance between the final and the starting
vertex is

∥(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)− (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∥ =
√
13,

and this proves the existence of a Hamiltonian Zebra’s tour in C(2, 15). Then, to extend this
solution to C(2, 16), it is sufficient to observe that C(2, 15) is the set of the 215 corners of a
15-cube. We remark that each vertex of a 15-face of a 16-cube is connected to some vertices on
the opposite 15-face of the same 16-cube by an equal number of minor diagonals. So, we can
take the solution for the k = 15 case and duplicate it on the opposite 15-face of the mentioned
16-cube.

Again, it is possible to mirror / rotate the 15-face in order to connect the endpoints of both
the covering paths of the two 15-faces through as many diagonals of (Euclidean) length

√
13. In

detail, we can extend the k = 15 solution

PZ
C (2, 15) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)

to k = 16, as follows.

1. In order to lift PZ
C (2, 15) from C(2, 15) to C(2, 16), we duplicate it as

PZ
C1
(2, 16) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)→ · · · → (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)

and

PZ
C2
(2, 16) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)→ · · · → (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1)

(by adding a new coordinate at the right-hand side, as usual).
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2. Now we have to mirror / rotate the 15-face joined by the polygonal chain PZ
C2
(2, 16); for this

purpose, it is sufficient to start from the left-hand side, switch the first 13 − 1 coordinates
of PZ

C2
(2, 16), and finally get the new polygonal chain

P̃Z
C2
(2, 16) := (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1)→

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)→ · · · → (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1).

3. Naturally, P̃Z
C2
(2, 16) is a Hamiltonian path because the Euclidean distance between the

last and the first vertex is
√
13, as the distance between any two consecutive vertices of the

given polygonal chain.

4. Finally, we can connect the 15-face of the 16-cube to the opposite 15-face by considering
the reverse path of P̃Z

C2
(2, 16), which is defined by

P̂Z
C2
(2, 16) := (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)←

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)← · · · ← (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1).

This is correct since the polygonal chain

PZ
C (2, 16) := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→

(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)→ · · · → (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)→
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1)→ · · · → (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)→

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)

is obtained by connecting the ending point of PZ
C1
(2, 16) to the starting point of P̂Z

C2
(2, 16).

Consequently, PZ
C (2, 16) is a Hamiltonian Zebra tour since the Euclidean distance

between the starting vertex (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and the ending vertex
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1) is

√
13, while the polygonal chains PZ

C1
(2, 16) and

P̂Z
C2
(2, 16) are Hamiltonian by construction.
Then, the described process can be iterated to extend the 16-cube solution to the 17-cube, and

so forth.
Therefore, for each C(2, k) grid such that k ≥ 15, we have shown the existence of a

Hamiltonian Zebra’s tour, and this proves the present theorem.

Lastly, let us point out that the algorithm used to prove Theorems 3.2 and 3.3 by extending
P T
C (2, 11) and PZ

C (2, 15) to higher dimensions is the same as the one described in the paper [12],
and thus it can be always invoked as we aim to generalize the existence of a given fairy chess
leaper tour that we have found for a specific 2×· · ·×2 chessboard to any other higher-dimensional
chessboard of the same kind.

4 Conclusion

With respect to C(2, k), every entry of the sub-matrix underlined in Table 1 has been investigated
since Theorem 2.1 excludes all fairy chess leapers but Wazir, Threeleaper, Knight, and Zebra
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(given the fact that [12] constructively proves the existence of Hamiltonian Euclidean Knight’s
tours on infinitely many grids C(2, k), while the present paper achieves the same result for the
other three mentioned leapers).

Actually, we have only proven the existence of Hamiltonian Euclidean Threeleaper’s and
Zebra’s tours in C(2, k) under the assumptions that k ≥ 11 and k ≥ 15, respectively. Thus, the
problem of proving or disproving the existence of Hamiltonian Euclidean tours is entirely open
for the Threeleaper in C(2, 10) and the Zebra in C(2, 14).

Although the current calculating power does not allow us to extend our analysis to different
fairy chess leapers, it would be interesting to examine the existence of Hamiltonian Euclidean
tours in C(3, k) for sufficiently large integers k.
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Appendix

The following script is the Python code used to study the Threeleaper and Zebra Hamiltonian
closed tours. The following is a brute force algorithm and the code has been running on
a QuadCore Intel Core i7-2600, 3700 Mhz with operating system Microsoft Windows 8.1
Professional.

The polygonal chain P T
C (2, 11) was found in about three seconds while we spent about thirty

seconds to find the polygonal chain PZ
C (2, 15).

1 def search(T, k, n, casi):

2 history = []

3 fullHistory = []

4 backtrack = False

5 steps = [sum(2**i for i in subset) for subset

6 in subsets(range(0, k), n)]

7 crash = 0

8 quit = 0

9 solutions = []

10

11 history.append(T)

12 while len(history) < 2**k + 2 and crash < 10**12:

13 crash += 1

14 if crash % 100000 == 0:

15 print(f"First {crash} cases verified.

16 Verifying: {history}")

17

18 if len(history) == 2**k + 1 and history[-1] == T:

19 quit += 1

20 if quit <= casi:

21 solution = ’\n’.join([bin(num)[2:].zfill(k)

22 for num in history])
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23 solutions.append(solution)

24 print(f"Found Hamilton cycle {quit}:\n{solution}")

25 if quit == casi:

26 with open("hamilton_cycles.txt", "w") as file:

27 file.write("Hamilton Cycles:\n\n")

28 file.write(’\n\n’.join(solutions))

29 return

30 else:

31 history.pop()

32 if backtrack:

33 history.pop()

34 backtrack = False

35 else:

36 if history[-1] == T and len(history) != 1:

37 history.pop()

38 if backtrack:

39 history.pop()

40 backtrack = False

41

42 for i in range(len(steps)):

43 if i == len(steps) - 1:

44 backtrack = True

45 step = steps[i]

46 nextT = history[-1] ˆ step

47 if nextT not in history or nextT == T:

48 history.append(nextT)

49 if history not in fullHistory:

50 fullHistory.append(history.copy())

51 else:

52 history.pop()

53 continue

54 break

55

56 def subsets(iterable, r):

57 pool = tuple(iterable)

58 n = len(pool)

59 if r > n:

60 return

61 indices = list(range(r))

62 yield tuple(pool[i] for i in indices)

63 while True:

64 for i in reversed(range(r)):

65 if indices[i] != i + n - r:

66 break

67 else:

68 return

69 indices[i] += 1

70 for j in range(i+1, r):

71 indices[j] = indices[j-1] + 1

72 yield tuple(pool[i] for i in indices)

67



73

74 import time

75

76 def main():

77 k = int(input("Number of dimensions (int): "))

78 n = int(input("Hamming distance (int): "))

79 casi = int(input("Number of solutions to find (int): "))

80 T = 0

81

82 start_time = time.time()

83 search(T, k, n, casi)

84 end_time = time.time()

85

86 execution_time = end_time - start_time

87 print(f"\nExecution time: {execution_time:.5f} seconds")

88

89 if __name__ == "__main__":

90 main()
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