A. D. Godase
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 100–110
DOI: 10.7546/nntdm.2024.30.1.100-110
Full paper (PDF, 218 Kb)
Details
Authors and affiliations
A. D. Godase
Department of Mathematics, V. P. College Vaijapur
Aurangabad (MS), India
Abstract
The aim of this paper is to establish some novel identities for hyperbolic k-Fibonacci octonions and k-Lucas octonions. We prove these properties using the identities of k-Fibonacci and k-Lucas numbers, which we determined previously.
Keywords
- Fibonacci number
- Lucas number
- k-Fibonacci number
- k-Lucas number
2020 Mathematics Subject Classification
- Primary: 11B39
- Secondary: 11B37, 11B52
References
- Bolat, C., & Köse, H. (2010). On the properties of k-Fibonacci numbers. International Journal of Contemporary Mathematical Sciences, 5(22), 1097–1105.
- Cariow, A., Cariowa, G., & Knapinski, J. (2015). A unified approach for
developing rationalized algorithms for hypercomplex number multiplication. Przeglad Elektrotechniczny, 91(2), 36–39. - Cariow, A., Cariowa, G., & Knapinski, J. (2015). Derivation of a low multiplicative complexity algorithm for multiplying hyperbolic octonions. Preprint. ArXiv:1502.06250.
- Carmody, K. (1988). Circular and hyperbolic quaternions, octonions, and sedenions. Applied Mathematics and Computation, 28(1), 27–47.
- Cayley, A. (1845). On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(172), 208–211.
- Demir, S. (2013). Hyperbolic octonion formulation of gravitational field equations. International Journal of Theoretical Physics, 52(1), 105–116.
- Demir, S., & Tanis¸li, M. (2016). Hyperbolic octonion formulation of the fluid Maxwell equations. Journal of the Korean Physical Society, 68(5), 616–623.
- Demir, S., & Zeren, E. (2018). Multifluid plasma equations in terms of hyperbolic octonions. International Journal of Geometric Methods in Modern Physics, 15(4), Article 1850053.
- Godase, A. D. (2019). Properties of k-Fibonacci and k-Lucas octonions. Indian Journal of Pure and Applied Mathematics, 50(4), 979–998.
- Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Godase, A. D. (2021). Study of generalized Fibonacci sequences. Doctoral dissertation. Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, India.
- Godase, A. D., (2021). Hyperbolic k-Fibonacci and k-Lucas quaternions. Mathematics Student, 90(1–2), 103–116.
- Hamilton, W. (1844). On a new species of imaginary quantities connected with a theory of quaternions. Proceedings of the Royal Irish Academy, 2, 424–434.
- Hamilton, W. (1866). Elements of Quaternions. Longmans, Green, & Company, UK.
- Horadam, A. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly, 70(3), 289–291.
- Kecilioglu, O., & Akkus, I. (2015). The Fibonacci octonions. Advances in Applied Clifford Algebras, 25(1), 151–158.
- Macfarlane, A. D. (1900). Hyperbolic quaternions. Proceedings of the Royal Society of Edinburgh, 23, 169–180.
- Özkan, E., & Uysal, M. (2022). On hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Notes on Number Theory and Discrete Mathematics, 28(2), 318–330.
- Polatlı, E., & Kesim, S. (2015). A note on Catalan’s identity for the k-Fibonacci quaternions. Journal of Integer Sequences, 18(8), Article 15.8.2.
- Polatlı, E., Kizilates¸, C., & Kesim, S. (2016). On split k-Fibonacci and k-Lucas quaternions. Advances In Applied Clifford Algebras, 26, 353-362.
- Ramirez, J. L. (2015). Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. Analele Universitatii Ovidius Constanta-Seria Matematica, 23(2), 201–212.
- Tanıs¸lı, M., Kansu, M. E., & Demir, S. (2012). A new approach to Lorentz invariance in electromagnetism with hyperbolic octonions. The European Physical Journal Plus, 127, Article 69.
- Uysal, M., Kumari, M., Kuloglu, B., Prasad, K., & Özkan, E. (2025). On the hyperbolic k-Mersenne and k-Mersenne–Lucas octonions. Kragujevac Journal of Mathematics, 49(5), 765–779.
Manuscript history
- Received: 21 October 2023
- Revised: 15 December 2024
- Accepted: 26 February 2024
- Online First: 1 March 2024
Copyright information
Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Özkan, E., & Uysal, M. (2022). On hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Notes on Number Theory and Discrete Mathematics, 28(2), 318–330.
Cite this paper
Godase, A. D. (2024). Some new properties of hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 30(1), 100-110, DOI: 10.7546/nntdm.2024.30.1.100-110.