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1 Introduction

Hamilton invented quaternions in 1843 and showed that they form a 4-dimensional non-
commutative division ring under multiplication [13,14]. Quaternions can be used to show rotations
in three-dimensional space, and have applications in computer graphics, robotics, and aerospace
engineering. They are also closely related to the more general Clifford algebras. Quaternions are
also used in various branches of mathematics, such as differential geometry and number theory.
Quaternion calculus is a dominant tool for solving problems related to 3-dimensional rotations.
Quaternions have also been used in artificial intelligence and image processing applications. They
are also used in robotics for controlling the movement of robotic arms.

Copyright © 2024 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Definition 1.1. (Horadam [15]) A quaternion ρ is an element of the form ρ = ρ0+ρ1i+ρ2j+ρ3k,
where ρ0, ρ1, ρ2, ρ3 are real components and 1, i, j, k are basis elements satisfying the properties
i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

In 1963, Horadam [15] introduced the Fibonacci and Lucas quaternions and investigated some
of their properties. In recent years, these quaternions were studied by many authors.

The concept of k-Fibonacci and k-Lucas quaternions was introduced and explored in 2015
by Ramirez [21]. These quaternions are a generalization of the Fibonacci and Lucas quaternions.
They have applications across a wide range of branches like the usual quaternions. Numerous
researchers have extensively studied these quaternions since their introduction. See [19, 20] for
more details.

There has been a lot of research done on the different quaternions in recent years and
their generalizations have been examined by several authors. The hyperbolic quaternions were
discovered by Macfarlane [17] in 1900. Macfarlane’s work was further expanded to the Cayley–
Dickson algebras by Hurwitz. These algebras are now expressed as Hurwitz algebras.

Definition 1.2. (Macfarlane [17]) The hyperbolic quaternion ð is an element of the form ð =

ð1 + ð2ϵ1 + ð3ϵ2 + ð4ϵ3 =
(
ð1,ð2,ð3,ð4

)
, with real components ð1, ð2, ð3, h4 and 1, ϵ1, ϵ2, ϵ3

are hyperbolic quaternion units that satisfy the non-commutative multiplication rules

ϵ1
2 = ϵ2

2 = ϵ3
2 = ϵ1ϵ2ϵ3 = 1, (1)

ϵ1ϵ2 = ϵ3 = −ϵ2ϵ1, ϵ2ϵ3 = ϵ1 = −ϵ3ϵ2, ϵ3ϵ1 = ϵ2 = −ϵ1ϵ3. (2)

The hyperbolic quaternion is neither a commutative nor an associative algebraic structure. In
the classical quaternion, every imaginary basis element has the property e2n =−1, while in the
hyperbolic quaternion all basis elements satisfy ϵ2m = +1. For more details, see [17]. Hyperbolic
k-Fibonacci quaternion and hyperbolic k-Lucas quaternion first defined by Godase [9, 10, 12].

Definition 1.3. (Godase [9, 10, 12]) The hyperbolic k -Fibonacci quaternion ðϕk,n is an element

of the form ðϕk,n = ϕk,n+ϕk,n+1ϵ1+ϕk,n+2ϵ2+ϕk,n+3ϵ3, and the hyperbolic k -Lucas quaternion

ðψk,n is an element of the form ðψk,n = ψk,n + ψk,n+1ϵ1 + ψk,n+2ϵ2 + ψk,n+3ϵ3. The hyperbolic
quaternion units 1, ϵ1, ϵ2 and ϵ3 satisfy the multiplication rules defined in the Definition 1.2 and
ϕk,n & ψk,n are k -Fibonacci and k -Lucas numbers.

The octonions were formed by A. Cayley [5] in 1845. Octonions are also called Cayley numbers.
In 2014, O. Kecilioglu and I. Akkus [16] defined Fibonacci and Lucas octonions and explored
some basic properties of octonions. In 1988, K. Carmody [4] discovered hyperbolic octonions and
inspected the different properties of hyperbolic octonions. Furthermore, he demonstrated that the
process of multiplying hyperbolic octonions does not follow a commutative or associative order.

Definition 1.4. (Carmody [4]) The hyperbolic octonion ϱ is an element of the form ϱ = ϱ0 +

ϱ1i1+ϱ2i2+ϱ3i3+ϱ4ϵ4+ϱ5ϵ5+ϱ6ϵ6+ϱ7ϵ7, where ϱ0, ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6, ϱ7 are real components
and 1, i1, i2, i3 are quaternion units. Besides, ϵ4(ϵ42 = 1) is a counter imaginary unit and the
bases ϵ5, ϵ6 and ϵ7 of hyperbolic octonion are defined as follows:

i1ϵ4 = ϵ5, i2ϵ4 = ϵ6, i3ϵ4 = ϵ7,

ϵ4
2 = ϵ5

2 = ϵ6
2 = ϵ7

2 = 1.
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The bases of the hyperbolic octonion ϱ satisfy the multiplication rule given in the Table 1
(Carmody [4]) below. The algebraic properties of the hyperbolic octonion can be constructed
using the multiplication rule. A. Cariow, G. Cariowa and J. Knapinski [2, 3] established the low
multiplicative complexity algorithm for multiplying two hyperbolic octonions.

Table 1. Multiplication rule for hyperbolic octonions.

· i1 i2 i3 ϵ4 ϵ5 ϵ6 ϵ7

i1 -1 i3 −i2 ϵ5 −ϵ4 −ϵ7 ϵ6

i2 −i3 −1 i1 ϵ6 ϵ7 −ϵ4 −ϵ5
i3 i2 −i1 −1 ϵ7 −ϵ6 ϵ5 −ϵ4
ϵ4 −ϵ5 −ϵ6 −ϵ7 1 −i1 −i2 −i3
ϵ5 ϵ4 −ϵ7 ϵ6 i1 1 i3 −i2
ϵ6 ϵ7 ϵ4 −ϵ5 i2 −i3 1 i1

ϵ7 −ϵ6 ϵ5 ϵ4 i3 i2 −i1 1

The hyperbolic octonion forms an 8-dimensional non-commutative algebraic structure.
Hyperbolic octonions are distinct from classical octonions. In classical octonions, all imaginary
basis elements have the property e2n = −1; while in hyperbolic octonions, hyperbolic basis
elements satisfy the property ϵ2m = +1. As classical octonions, hyperbolic octonions are also
non-associative, and they further satisfy the property (ϵced)ϵp = −ϵc(edϵp), for c ̸= d, d ̸= p and
p ̸= c. Details can be found in [6–8, 18, 22, 23].

In 2019, Godase A. D. [9, 10] expanded the ideas of hyperbolic k-Fibonacci octonion and
hyperbolic k-Lucas octonion from the ideas of hyperbolic k-Fibonacci quaternion and hyperbolic
k-Lucas quaternion.

Definition 1.5. (Godase [9, 10]) The hyperbolic k -Fibonacci and k -Lucas octonions ϱϕk,n and
ϱψk,n are defined by the expressions ϱϕk,n = ϕk,n + ϕk,n+1i1 + ϕk,n+2i2 + ϕk,n+3i3 + ϕk,n+4ϵ4 +

ϕk,n+5ϵ5 + ϕk,n+6ϵ6 + ϕk,n+7ϵ7, and ϱψk,n = ψk,n + ψk,n+1i1 + ψk,n+2i2 + ψk,n+3i3 + ψk,n+4ϵ4 +

ψk,n+5ϵ5 + ψk,n+6ϵ6 + ψk,n+7ϵ7, where i1, i2, i3, ϵ4, ϵ5, ϵ6, ϵ7 are hyperbolic octonion units given
as in the Definition 1.4.

2 Properties of hyperbolic k-Fibonacci
and k-Lucas octonions

Lemmas 2.1 to 2.4 are essential for proving the main theorems in this section, namely Theorems
2.1 to 2.7. The proofs of the Lemmas 2.1 to 2.4 can be found in [11]. In this section, different
properties containing hyperbolic k -Fibonacci and k -Lucas octonions are established. Furthermore,

we explore binomial sums for these octonions.
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Lemma 2.1. In the case where u = µ1 or u = µ2 are the roots of the characteristic equation
r2 − kr − 1 = 0, the following results hold:

(a) u2 = ku+ 1, (3)

(b) un = uϕk,n + ϕk,n−1, (4)

(c) u2n = unψk,n − (−1)n, (5)

(d) utn = un
ϕk,tn

ϕk,n
− (−1)n

ϕk,(t−1)n

ϕk,n
, (6)

(e) usnϕk,rn − urnϕk,sn = (−1)snϕk,(r−s)n. (7)

Proof. (b) In order to prove this part, we apply the principle of mathematical induction to n. For
n = 2, we have from (3)

µ2
1 = µ1ϕk,2 + ϕk,1,

µ2
2 = µ2ϕk,2 + ϕk,1.

The result is assumed to be true for n. As a result, we have

µn1 = µ1ϕk,n + ϕk,n−1, (8)

µn2 = µ2ϕk,n + ϕk,n−1. (9)

Using (3) and (8), we obtain

µn+1
1 = µ1µ1

n

= µ1

(
µ1ϕk,n + ϕk,n−1

)
= µ1

2ϕk,n + µ1ϕk,n−1

= (kµ1 + 1)ϕk,n + µ1ϕk,n−1

= (kϕk,n + ϕk,n−1)µ1 + ϕk,n

= ϕk,n+1µ1 + ϕk,n.

In a similar manner, we can prove that

µn+1
2 = µ2ϕk,n+1 + ϕk,n.

Lemma 2.2. If u = µ1 or µ2, then

1 + ku+ u2(2
n+1+1) = ψk,2n+1u2(2

n+1). (10)

Proof. Let u = µ1. As a result of using the Binet formula, we have

ψk,2n+1µ
2(2n+1)
1 =

(
µ2n+1

1 + µ2n+1

2

)
µ
2(2n+1)
1

=

(
µ2n+1

1 µ2n+1

1

)
µ2
1 +

(
µ2n+1

2 µ2n+1

1

)
µ2
1
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=µ2
1

(
µ2n+1+2n+1

1 + (−1)2
n+1

)
=µ2

1

(
µ2n+2

1 + 1

)
=

(
µ2
1 + µ2

1µ
2n+2

1

)
=

(
µ2
1 + µ2+2n+2

1

)
=1 + kµ1 + µ

2(2n+1+1)
1 .

It is also possible to prove the result for u = µ2.

Lemma 2.3. If t ∈ Z+ with t ≥ 1, the following results hold

(1) µ2t
1 =

ϕk,2t
k

µ1

√
∆− ψk,2t−1

k
, (11)

(2) µ2t
2 = −ϕk,2t

k
µ2

√
∆− ψk,2t−1

k
. (12)

Lemma 2.4. The following results hold for t ∈ Z+ with t ≥ 1

(1) µ2t+1
1 =

ψk,2t+1

k
µ1 −

ϕk,2t
k

√
∆, (13)

(2) µ2t+1
2 =

ψk,2t+1

k
µ2 +

ϕk,2t
k

√
∆. (14)

Theorem 2.1. For n,m, r, s, t ∈ Z+, we have

ϕk,rnϱ
ϕ
k,sn+mt = ϕk,snϱ

ϕ
k,rn+mt + (−1)snϕk,(r−s)nϱ

ϕ
k,mt. (15)

Proof. From the Lemma 2.1(e), we can write

µsn1 ϕk,rn − µrn1 ϕk,sn = (−1)snϕk,(r−s)n, (16)

µsn2 ϕk,rn − µrn2 ϕk,sn = (−1)snϕk,(r−s)n. (17)

By multiplying Equation (16) by
µ̂1µ

mt
1

µ1 − µ2

and (17) by
µ̂2µ

mt
2

µ1 − µ2

and subtracting, we obtain

ϕk,rn

(
µ̂1µ

sn+mt
1 − µ̂2µ

sn+mt
2

µ1 − µ2

)
= ϕk,sn

(
µ̂1µ

rn+mt
1 − µ̂2µ

rn+mt
2

µ1 − µ2

)
+ (−1)snϕk,(r−s)n

(
µ̂1µ

mt
1 − µ̂2µ

mt
2

µ1 − µ2

)
,

i.e.,

ϕk,rnϱ
ϕ
k,sn+mt = ϕk,snϱ

ϕ
k,rn+mt + (−1)snϕk,(r−s)nϱ

ϕ
k,mt.

This completes the proof of Theorem 2.1.

Theorem 2.2. Let n,m, t ∈ Z+. Then prove that

ψk,2n+1ϱϕk,mt+2n+1+2 = ϱϕk,mt+2 + ϱϕk,mt+2n+2+2. (18)
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Proof. Applying the Lemma 2.2, we write

ψk,2n+1µ
(2n+1+2)
1 = µ2

1 + µ
(2n+2+2)
1 , (19)

ψk,2n+1µ
(2n+1+2)
2 = µ2

2 + µ
(2n+2+2)
2 . (20)

Now, by multiplying Equation (19) by
µ̂1µ

mt
1

µ1 − µ2

and Equation (20) by
µ̂2µ

mt
2

µ1 − µ2

and subtracting,

we obtain

ψk,2n+1

(
µ̂1µ

mt+2n+1+2
1 − µ̂2µ

mt+2n+1+2
2

µ1 − µ2

)

=

(
µ̂1µ

mt+2
1 − µ̂2µ

mt+2
2

µ1 − µ2

)
+

(
µ̂1µ

mt+2n+2+2
1 − µ̂2µ

mt+2n+2+2
2

µ1 − µ2

)
,

which implies

ψk,2n+1ϱϕk,mt+2n+1+2 = ϱϕk,mt+2 + ϱϕk,mt+2n+2+2.

Thus the proof of Theorem 2.2.

Theorem 2.3. Let n,m, r, s, t ∈ Z+. Then show that

(i) kϱϕk,mr+2t = ϕk,2tϱ
ψ
k,mr+1 − ψk,2t−1ϱ

ϕ
k,mr, (21)

(ii) kϱψk,mr+2t = ∆ϕk,2tϱ
ϕ
k,mr+1 − ψk,2t−1ϱ

ψ
k,mr. (22)

Proof. (i) By making use of the Lemma 2.3, we have

kµ2t
1 = ϕk,2tµ1

√
∆− ψk,2t−1, (23)

kµ2t
2 = −ϕk,2tµ2

√
∆− ψk,2t−1. (24)

By multiplying Equation (23) by
µ̂1µ

mr
1

µ1 − µ2

and Equation (24) by
µ̂2µ

mr
2

µ1 − µ2

and subtracting, we

obtain

kϱϕk,mr+2t = ϕk,2tϱ
ψ
k,mr+1 − ψk,2t−1ϱ

ϕ
k,mr.

(ii) Again, multiplying the Equation (23) by µ̂1µ
mr
1 and (24) by µ̂2µ

mr
2 and adding, we get

kϱψk,mr+2t = ∆ϕk,2tϱ
ϕ
k,mr+1 − ψk,2t−1ϱ

ψ
k,mr,

which completes the proof of Theorem 2.3.

Theorem 2.4. Let n,m, r, s, t ∈ Z+. Then show that

(i) kϱϕk,mr+2t+1 = ψk,2t+1ϱ
ϕ
k,mr+1 − ϕk,2tϱ

ψ
k,mr, (25)

(ii) kϱψk,mr+2t+1 = ψk,2t+1ϱ
ψ
k,mr+1 −∆ϕk,2tkϱ

ϕ
k,mr. (26)
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Proof. From the Lemma 2.4, we have

kµ2t+1
1 = ψk,2t+1µ1 −

√
∆ϕk,2t, (27)

kµ2t+1
2 = ψk,2t+1µ2 +

√
∆ϕk,2t. (28)

By multiplying Equation (27) by
µ̂1µ

mr
1

µ1 − µ2

and Equation (28) by
µ̂2µ

mr
2

µ1 − µ2

and subtracting, we

obtain

kϱϕk,mr+2t+1 = ψk,2t+1ϱ
ϕ
k,mr+1 − ϕk,2tϱ

ψ
k,mr.

(ii) Furthermore, multiplying the equation (27) by µ̂1µ
mr
1 and (28) by µ̂2µ

mr
2 and adding, we get

kϱψk,mr+2t+1 = ψk,2t+1ϱ
ψ
k,mr+1 −∆ϕk,2tϱ

ϕ
k,mr.

This completes the proof of Theorem 2.4.

Theorem 2.5. Let n,m, r, s, t, l ∈ Z+. Then prove that

(−1)smnϕnk,(r−s)mϱ
ϕ
k,lt =

n∑
i=0

(
n

i

)
(−1)n−iϕik,rmϕ

n−i
k,smϱ

ϕ
k,smi+rm(n−i)+lt. (29)

Proof. Applying the Lemma 2.1(e), we have

µsm1 ϕk,rm − µrm1 ϕk,sm =(−1)smϕk,(r−s)m,

µsm2 ϕk,rm − µrm2 ϕk,sm =(−1)smϕk,(r−s)m.

By employing the binomial theorem, we get

(−1)smnϕnk,(r−s)m =
n∑
i=0

(
n

i

)
(−1)n−iϕik,rmϕ

n−i
k,smµ

smi+rm(n−i)
1 , (30)

(−1)smnϕnk,(r−s)m =
n∑
i=0

(
n

i

)
(−1)n−iϕik,rmϕ

n−i
k,smµ

smi+rm(n−i)
2 . (31)

Now, by multiplying Equation (30) by
µ̂1µ

lt
1

µ1 − µ2

and equation (31) by
µ̂2µ

lt
2

µ1 − µ2

and subtracting,

we obtain

(−1)smnϕnk,(r−s)m

(
µ̂1µ

lt
1 − µ̂2µ

lt
2

µ1 − µ2

)

=
n∑
i=0

(
n

i

)
(−1)n−iϕik,rmϕ

n−i
k,sm

(
µ̂1µ

smi+rm(n−i)+lt
1 − µ̂2µ

smi+rm(n−i)+lt
2

µ1 − µ2

)
,

i.e.,

(−1)smnϕnk,(r−s)mϱ
ϕ
k,lt =

n∑
i=0

(
n

i

)
(−1)n−iϕik,rmϕ

n−i
k,smϱ

ϕ
k,smi+rm(n−i)+lt,

which completes the proof of Theorem 2.5.
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Theorem 2.6. Let n,m, r, s, t ∈ Z+. Then show that

(i) ψnk,2r+1ϱϕk,(2r+1+2)n+mt =
n∑
i=0

(
n

i

)
ϱϕk,(2r+2)i+2n+mt, (32)

(ii) ψnk,2r+1ϱψk,(2r+1+2)n+mt =
n∑
i=0

(
n

i

)
ϱψk,(2r+2)i+2n+mt. (33)

Proof. By making the use of Lemma 2.2 and Lemma 2.1 (a), we write

ψk,2r+1µ
(2r+1+2)
1 =µ2

1 + µ
(2r+2+2)
1 ,

ψk,2r+1µ
(2r+1+2)
2 =µ2

2 + µ
(2r+2+2)
2 .

Thanks to Binomial theorem. By using it, we obtain

ψnk,2r+1µ
(2r+1+2)n
1 =

n∑
i=0

(
n

i

)
µ
(2r+2)i+2n
1 , (34)

ψnk,2r+1µ
(2r+1+2)n
2 =

n∑
i=0

(
n

i

)
µ
(2r+2)i+2n
2 . (35)

By multiplying Equation (34) by
µ̂1µ

mt
1

µ1 − µ2

and Equation (35) by
µ̂2µ

mt
2

µ1 − µ2

and subtracting, we get

ψnk,2r+1ϱϕk,(2r+1+2)n+mt =
n∑
i=0

(
n

i

)
ϱϕk,(2r+2)i+2n+mt.

Moreover, by multiplying Equation (34) by µ̂1µ
mt
1 and Equation (35) by µ̂2µ

mt
2 and adding, we

obtain

ψnk,2r+1ϱψk,(2r+1+2)n+mt =
n∑
i=0

(
n

i

)
ϱψk,(2r+2)i+2n+mt.

This proves the Theorem 2.6.

Theorem 2.7. Let n,m, r, s, t, q ∈ Z+. Then prove that

(i)
n∑
i=0

(
n

i

)
k(i−n)ψ

(n−i)
k,2q−1ϱ

ϕ
k,2qi+mt =



k−n(ϕk,2q)
n∆

n
2 ϱϕk,n+mt,

if n is even;

k−n(ϕk,2q)
n∆

n−1
2 ϱψk,n+mt,

if n is odd,

(36)

(ii)
n∑
i=0

(
n

i

)
k(i−n)(ψ

(n−i)
k,2q−1)ϱ

ψ
k,2qi+mt =



k−n(ϕk,2q)
n∆

n
2 ϱψk,n+mt,

if n is even;

k−n(ϕk,2q)
n∆

n+1
2 ϱϕk,n+mt,

if n is odd.

(37)
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Proof. (i) By applying the Lemma 2.3, we have

µ2q
1 +

ψk,2q−1

k
=
ϕk,2q
k

µ1

√
∆,

µ2q
2 +

ψk,2q−1

k
= −ϕk,2q

k
µ2

√
∆.

Now, by employing the binomial theorem, we achieve

n∑
i=0

(
n

i

)
ki−nψ

(n−i)
k,2q−1(µ

2qi
1 ) = k−nϕnk,2q∆

n
2 (µn1 ), (38)

n∑
i=0

(
n

i

)
ki−nψ

(n−i)
k,2q−1(µ

2qi
2 ) = (−1)nk−nϕnk,2q∆

n
2 (µn2 ). (39)

Multiplying Equation (38) by
µ̂1µ

mt
1

µ1 − µ2

and Equation (39) by
µ̂2µ

mt
2

µ1 − µ2

and subtracting, we get

n∑
i=0

(
n

i

)
k(i−n)(ψ

(n−i)
k,2q−1)

(
µ̂1µ

2qi+mt
1 − µ̂2µ

2qi+mt
2

µ1 − µ2

)

=


k−n(ϕk,2q)

n∆
n
2

( µ̂1µ
n+mt
1 − µ̂2µ

n+mt
2

µ1 − µ2

)
, if n is even,

k−n(ϕk,2q)
n∆

n−1
2

(
µ̂1µ

n+mt
1 + µ̂2µ

n+mt
2

)
, if n is odd,

i.e.,

n∑
i=0

(
n

i

)
k(i−n)(ψ

(n−i)
k,2q−1ϱ

ϕ
k,2qi+mt =


k−n(ϕk,2q)

n∆
n
2 ϱϕk,n+mt, if n is even,

k−n(ϕk,2q)
n∆

n−1
2 ϱψk,n+mt, if n is odd.

(ii) Again, by multiplying Equation (38) by µ̂1µ
mt
1 and Equation (39) by µ̂2µ

mt
2 and adding, we

get

n∑
i=0

(
n

i

)
k(i−n)(ψ

(n−i))
k,2q−1

(
µ̂1µ

2qi+mt
1 + µ̂2µ

2qi+mt
2

)

=


k−n(ϕk,2q)

n∆
n
2

(
µ̂1µ

n+mt
1 + µ̂2µ

n+mt
2

)
, if n is even;

k−n(ϕk,2q)
n∆

n+1
2

( µ̂1µ
n+mt
1 − µ̂2µ

n+mt
2

µ1 − µ2

)
, if n is odd,

which implies

n∑
i=0

(
n

i

)
k(i−n)(ψ

(n−i)
k,2q−1)ϱ

ψ
k,2qi+mt =


k−n(ϕk,2q)

n∆
n
2 ϱψk,n+mt, if n is even;

k−n(ϕk,2q)
n∆

n+1
2 ϱϕk,n+mt, if n is odd.

This completes the proof of Theorem 2.7.
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Conclusions

Our work establishes new identities for hyperbolic k-Fibonacci octonions and k-Lucas octonions.
In our earlier research, we developed some properties of k-Fibonacci and k-Lucas numbers which
allowed us to establish the identities of hyperbolic k-Fibonacci and k-Lucas octonions. These
identities can be used to solve various problems related to these octonions, and can be applied to
many other areas of mathematics. We believe that this work can open up new research avenues in
the field of octonions.
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[7] Demir, S., & Tanişli, M. (2016). Hyperbolic octonion formulation of the fluid Maxwell
equations. Journal of the Korean Physical Society, 68(5), 616–623.

[8] Demir, S., & Zeren, E. (2018). Multifluid plasma equations in terms of hyperbolic octonions.
International Journal of Geometric Methods in Modern Physics, 15(4), Article 1850053.

[9] Godase, A. D. (2019). Properties of k-Fibonacci and k-Lucas octonions. Indian Journal of
Pure and Applied Mathematics, 50(4), 979–998.

[10] Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number
Theory and Discrete Mathematics, 26(3), 176–188.

[11] Godase, A. D. (2021). Study of generalized Fibonacci sequences. Doctoral dissertation.
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, India.

109



[12] Godase, A. D., (2021). Hyperbolic k-Fibonacci and k-Lucas quaternions. Mathematics
Student, 90(1–2), 103–116.

[13] Hamilton, W. (1844). On a new species of imaginary quantities connected with a theory of
quaternions. Proceedings of the Royal Irish Academy, 2, 424–434.

[14] Hamilton, W. (1866). Elements of Quaternions. Longmans, Green, & Company, UK.

[15] Horadam, A. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The
American Mathematical Monthly, 70(3), 289–291.

[16] Kecilioglu, O., & Akkus, I. (2015). The Fibonacci octonions. Advances in Applied Clifford
Algebras, 25(1), 151–158.

[17] Macfarlane, A. D. (1900). Hyperbolic quaternions. Proceedings of the Royal Society of
Edinburgh, 23, 169–180.
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