Hyperbolic k-Fibonacci and k-Lucas octonions

A. D. Godase
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 3, Pages 176—188
DOI: 10.7546/nntdm.2020.26.3.176-188
Download full paper: PDF, 182 Kb

Details

Authors and affiliations

A. D. Godase
Department of Mathematics, V. P. College Vaijapur
Aurangabad (MH), India

Abstract

In this paper, we introduce the hyperbolic k-Fibonacci and k-Lucas octonions. We present Binet’s formulas, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity and generating functions for the k-Fibonacci and k-Lucas hyperbolic octonions.

Keywords

  • Fibonacci sequence
  • k-Fibonacci sequence
  • k-Lucas sequence

2010 Mathematics Subject Classification

  • 11B39
  • 11B37

References

  1. Altmann, S. L. (1986). Rotations, Quaternions, and Double Groups, Oxford University Press.
  2. Bolat C., & Hasan K. (2010). On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences, 5 (22), 1097–1105.
  3. Cariow, A., Cariowa, G., & Knapinski, J (2015). Derivation of a low multiplicative complexity algorithm for multiplying hyperbolic octonions, arXiv preprint arXiv:1502.06250.
  4. Cariow, A., & Cariowa, G. (2015). A unified approach for developing rationalized algorithms for hypercomplex number multiplication, Electric Review, 91(2), 36–39.
  5. Catarino, P. (2014). A note on h(x)-Fibonacci quaternion polynomials, Chaos Solitons Fractals, 77, 1–5.
  6. Catarino, P., & Vasco, P. (2013). Some basic properties and a two-by-two matrix involving the k-Pell numbers, Int. J. Math. Anal.(Ruse), 7 (45), 2209–2215.
  7. Dhakne, M. B., & Godase, A. D. (2014). On the properties of k-Fibonacci and k-Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 2 (1), 100–106.
  8. Falcon, S. (2012). Generalized Fibonacci sequences generated from a k-Fibonacci sequence, Journal of Mathematics Research, 4 (2), 97–100.
  9. Falcon, S. (2011). On the k-Lucas numbers, Int. J. Contemp. Math. Sciences, 6 (21), 1039–1050.
  10. Falcon, S., & Plaza, A. (2007). The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals, 33 (1), 38–49.
  11. Falcon, S., & Plaza, A. (2009). On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation, 208 (1), 180–185.
  12. Falcon, S., & Plaza, A. (2009). On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals, 39 (3), 1005–1019.
  13. Fritzer, H. P. (2001). Molecular symmetry with quaternions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57 (10), 1919–1930.
  14. Godase, A. D. (2019). Properties of k-Fibonacci and k-Lucas octonions, Indian J. Pure Appl. Math., 54 (4), 979–998.
  15. Godase, A. D. (2019). Hyperbolic k-Fibonacci and k-Lucas Quaternions, Mathematics Student, submitted.
  16. Goldstein, H. (1980). Classical Mechanics, Addison-Wesley Series in Physics.
  17. Halici, S. (2012). On Fibonacci quaternions, Adv. Appl. Clifford Algebras, 22, 321–327.
  18. Hamilton, W. R. (1866). Elements of Quaternions, Cambridge University Press.
  19. Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions, The American Mathematical Monthly, 70 (3), 289–291.
  20. Iyer, M. R. (1969). A note on Fibonacci quaternions, The Fibonacci Quarterly, 7 (3), 225–229.
  21. Iyer, M. R. (1969). Some results on Fibonacci quaternions, The Fibonacci Quarterly, 7 (2), 201–210.
  22. Polatli, E., & Kesim, S. (2015). On quaternions with generalized Fibonacci and Lucas number components, Advances in Difference Equations, 2015, (Article No. 169), 8 pages.
  23. Ramirez, J. L. (2015). Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions, An. St. Univ. Ovidius Constanta, 23, 201–212.
  24. Tinkham, M. (1964). Group Theory and Quantum Mechanics, McGraw-Hill Book Company.
  25. Tosun, M., Akyigit, M., & Kosal, H. (2013). Split Fibonacci quaternions, Adv. Appl. Clifford Algebras, 23, 535–545.
  26. Tosun, M., Akyigit, M., & Kosal, H. (2014). Fibonacci generalized quaternions, Adv. Appl. Clifford Algebras, 24, 631–641.
  27. Yazlik, Y., Yilmaz, N., & Taskara, N. (2012). On the sums of powers of k-Fibonacci and k-Lucas sequences, Selcuk J. Appl. Math., Special Issue, 47–50.

Related papers

Cite this paper

Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26 (3), 176-188, doi: 10.7546/nntdm.2020.26.3.176-188.

Comments are closed.