**Elif Tan and Umut Öcal**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 29, 2023, Number 4, Pages 635–646

DOI: 10.7546/nntdm.2023.29.4.635-646

**Full paper (PDF, 199 Kb)**

## Details

### Authors and affiliations

Elif Tan

*Department of Mathematics, Ankara University
06100 Tandogan Ankara, Turkey*

Umut Öcal

*Department of Mathematics, Ankara University
06100 Tandogan Ankara, Turkey*

### Abstract

In this study, we introduce a new class of generalized quaternions whose components are dual-generalized complex Horadam numbers. We investigate some algebraic properties of them.

### Keywords

- Dual-generalized complex numbers
- Quaternions, Fibonacci numbers
- Horadam numbers
- Fibonacci quaternions

### 2020 Mathematics Subject Classification

- 11B39
- 11R52

### References

- Ait-Amrane, N. R., Gok, I., & Tan, E. (2021). Hyper-dual Horadam quaternions.
*Miskolc Mathematical Notes*. 22(2), 903–913. - Akyigit, M., Kosal, H. H., & Tosun, M. (2014). Fibonacci generalized quaternions.

*Advances in Applied Clifford Algebras*, 24, 631–641. - Alfsmann, D. (2006). On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing.
*14th European Signal Processing Conference, Florence, Italy.* - Aslan, S., Bekar, M., & Yayli, Y. (2020). Hyper-dual split quaternions and rigid body motion.
*Journal of Geometry and Physics*, 158, Article ID 103876. - Catoni, F., Cannata, R., Catoni, V., & Zampetti, P. (2004). Two-dimensional hypercomplex numbers and related trigonometries and geometries.
*Advances in Applied Clifford Algebras*, 14, 47–68. - Cihan, A., Azak, A.Z., Gungor, M.A., & Tosun, M. (2019). A Study on Dual hyperbolic Fibonacci and Lucas numbers.
*Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica*, 27(1), 35–48. - Clifford, W. K. (1873). Preliminary sketch of biquaternions.
*Proceedings of London Mathematical Society*, 4, 361–395. - Cockle, J. (1849). On a new imaginary in algebra.
*Philosophical Magazine, London–Dublin–Edinburgh*, 3(34), 37–47. - Cohen, A., & Shoham, M. (2018). Principle of transference–An extension to hyper-dual numbers.
*Mechanism and Machine Theory*, 125, 101–110. - Dickson, L. E. (1924). On the theory of numbers and generalized quaternions.
*American Journal of Mathematics*, 46(1), 1–16. - Fike, J. A. (2009). Numerically exact derivative calculations using hyper-dual numbers.
*3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design*. - Fike, J. A., & Alonso, J. J. (2011). The development of hyper-dual numbers for exact second-derivative calculations.
*49th AIAA Aerospace Sciences Meeting 28 including the New Horizons Forum and Aerospace Exposition*, Orlando, Florida, 4–7. - Fjelstad, P., & Gal, S. G. (2001). Two-dimensional geometries, topologies, trigonometries, and physics generated by complex-type numbers.
*Advances in Applied Clifford Algebras*, 11(1), 81–107. - Griffiths, L. W. (1928). Generalized quaternion algebras and the theory of numbers.
*American Journal of Mathematics*, 50(2), 303–314. - Gungor, M. A., & Azak, A. Z. (2017). Investigation of dual-complex Fibonacci,

dual-complex Lucas numbers and their properties.*Advances in Applied Clifford Algebras*, 27, 3083–3096. - Gurses, N., Senturk, G. Y., & Yuce, S. (2021). A study on dual-generalized complex and hyperbolic-generalized complex numbers.
*Gazi University Journal of Science*, 34(1), 180–194. - Halici, S., & Karatas, A. (2017). On a generalization for quaternion sequences.
*Chaos, Solitons and Fractals*, 98, 178–182. - Hamilton, W. R. (1853).
*Lectures on Quaternions*. Hodges and Smith, Dublin. - Harkin, A. A., & Harkin, J. B. (2004). Geometry of generalized complex numbers.

*Mathematics Magazine*, 77(2), 118–129. - Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions.
*The American Mathematical Monthly*, 70, 289–291. - Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers.
*The Fibonacci Quarterly*, 3(3), 161-176. - Jafari, M., & Yaylı, Y. (2015). Generalized quaternions and their algebraic properties.
*Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics*, 64(1), 5–27. - Kantor, I., & Solodovnikov, A. (1989).
*Hypercomplex Numbers*. Springer-Verlag, New York. - Lie, S., & Scheffers G. (1893).
*Vorlesungen uber continuerliche Gruppen*, Kap. 21, Taubner, Leipzig. - Majernik, V. (1996). Multicomponent number systems.
*Acta Physica Polonica Series A*, 90, 491–498. - Messelmi, F. (2015). Dual-complex numbers and their holomorphic functions. https://hal.archives-ouvertes.fr/hal-01114178.
- Motter, A. E., & Rosa, A. F. (1998). Hyperbolic calculus.
*Advances in Applied Clifford Algebras*, 8(1), 109–128. - Nurkan, S. K., & Guven, I. A. (2015). Dual Fibonacci quaternions.
*Advances in Applied Clifford Algebras*, 25(2), 403–414. - Pottman, H., & Wallner, J. (2000).
*Computational Line Geometry*. Springer-Verlag Berlin Heidelberg New York. - Prasad, B. (2021). Dual complex Fibonacci
*p*-numbers.*Chaos, Solitons and Fractals*, 145, Article ID 109922. - Senturk, G. Y., Gurses, N., & Yuce, S. (2022). Construction of dual-generalized complex Fibonacci and Lucas quaternions.
*Carpathian Mathematical Publications*, 14(2), 406–418. - Senturk, T. D., Dasdemir, A., Bilgici, G., & Unal, Z. (2019). On unrestricted Horadam generalized quaternions.
*Utilitas Mathematica*, 110, 89-98. - Tan, E. (2017). Some properties of the bi-periodic Horadam sequences.
*Notes on Number Theory and Discrete Mathematics*, 23(4), 56–65. - Tan, E., Dagli, M., & Belkhir, A. (2023). Bi-periodic incomplete Horadam numbers.
*Turkish Journal of Mathematics*, 47(2), 554–564. - Tan, E., & Leung, H. H. (2020). Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences.
*Advances in Difference Equations*, 2020(26). - Tan, E., & Leung, H. H. (2020). Some results on Horadam quaternions.
*Chaos, Solitons and Fractals*, 138, Article ID 109961. - Yaglom, I. M. (1968).
*Complex Numbers in Geometry*. Academic Press, New York.

### Manuscript history

- Received: 3 February 2023
- Revised: 20 August 2023
- Accepted: 12 September 2023
- Online First: 13 September 2023

### Copyright information

Ⓒ 2023 by the Authors.

This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

## Related papers

- Tan, E. (2017). Some properties of the bi-periodic Horadam sequences.
*Notes on Number Theory and Discrete Mathematics*, 23(4), 56–65.

## Cite this paper

Tan, E., & Öcal, U. (2023). On a generalization of dual-generalized complex Fibonacci quaternions. *Notes on Number Theory and Discrete Mathematics*, 29(4), 635-646, DOI: 10.7546/nntdm.2023.29.4.635-646.