Nurretin Irmak and Abdullah Açikel
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 2, Pages 354–359
DOI: 10.7546/nntdm.2023.29.2.354-359
Full paper (PDF, 276 Kb)
Details
Authors and affiliations
Nurretin Irmak
![]()
Department of Basic Science, Natural and Engineering Faculty,
Konya Technical University, Konya, Turkey
Abdullah Açikel
![]()
Hassa Vocational School, Hatay Mustafa Kemal University,
Hatay, Turkey
Abstract
Assume that
is the
-th term of Tribonacci sequence and
is the
-th term of Padovan sequence. In this paper we solve the equation
completely.
Keywords
- Tribonacci numbers
- Padovan numbers
- Baker methods
- Linear logarithms
2020 Mathematics Subject Classification
- 11J86
- 11D72
- 11B39
References
- Atanassov, K., Dimitrov, D., & Shannon, A. (2009). A remark on ψ-function and Pell–Padovan’s sequence. Notes on Number Theory and Discrete Mathematics, 15(2), 1–11.
- Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequence. Revista Colombiana de Matemáticas, 46, 67–79.
- Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for 𝑘-generalized Fibonacci numbers. Journal of Integer Sequences, 17(4), Article 14.4.7.
- Dujella, A., & Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics, Oxford II. Ser., 49(195), 291–306.
- Lomeli, A. C. G., & Hernandez, S. H. (2019). Repdigits as sums of two Padovan numbers. Journal of Integer Sequences, 22, Article 19.2.3.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya, 64, 125–180. English: Izvestiya: Mathematics, 64 (2000), 1217–1269.
- Padovan, R. (2002). Dom Hans Van Der Laan and the Plastic Number. In: Kim, W., & Rodrigues, J. F. (Eds.) Architecture and Mathematics, Fucecchio (Florence): Kim Williams Books, pp. 181–193.
- Sokhuma, K. (2013). Matrices formula for Padovan and Perrin sequences. Applied Mathematics Sciences, 7(142), 7093–7096.
- Shannon, A. G., Anderson, P. G., & Horadam A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science and Technology, 37(7), 825–831.
- Spickerman, W. R. (1982). Binet’s formula for the Tribonacci numbers. The Fibonacci Quarterly, 20, 118–120.
Manuscript history
- Received: 13 October 2022
- Revised: 16 March 2023
- Accepted: 10 May 2023
- Online First: 15 May 2023
Copyright information
Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Atanassov, K., Dimitrov, D., & Shannon, A. (2009). A remark on ψ-function and Pell–Padovan’s sequence. Notes on Number Theory and Discrete Mathematics, 15(2), 1–11.
Cite this paper
Irmak, N., & Açikel, A. (2023). Intersection of Padovan and Tribonacci sequences. Notes on Number Theory and Discrete Mathematics, 29(2), 354-359, DOI: 10.7546/nntdm.2023.29.2.354-359.
