Intersection of Padovan and Tribonacci sequences

Nurettin Irmak ${ }^{1}$ and Abdullah Açıkel ${ }^{2}$

${ }^{1}$ Department of Basic Science, Natural and Engineering Faculty, Konya Technical University, Konya, Turkey
e-mails: irmaknurettin@gmail.com, nirmak@ktun.edu.tr
${ }^{2}$ Hassa Vocational School, Hatay Mustafa Kemal University, Hatay, Turkey
e-mails: abdullahacikel3107@gmail.com, aacikel@mku.edu.tr

Received: 13 October 2022
Accepted: 10 May 2023

Revised: 16 March 2023
Online First: 15 May 2023

Abstract

Assume that T_{n} is the n-th term of Tribonacci sequence and P_{m} is the m-th term of Padovan sequence. In this paper we solve the equation $T_{n}=P_{m}$ completely.

Keywords: Tribonacci numbers, Padovan numbers, Baker methods, Linear logarithms. 2020 Mathematics Subject Classification: 11J86, 11D72, 11B39.

1 Introduction

There are many valuable studies about finding common terms of number sequences in the literature. By the motivation of these papers, we solve the equation

$$
\begin{equation*}
P_{m}=T_{n} \tag{1}
\end{equation*}
$$

Here, the terms P_{m} and T_{n} are the m-th Padovan number and n-th Tribonacci number, respectively. Now, we present the definitions of these sequences.

For $m \geq 0$, the Padovan sequence is defined by the recurrence relation $P_{m+3}=P_{m+1}+P_{m}$ with the initials $P_{0}=P_{1}=P_{2}=1$. The first few terms of the sequence of Padovan are

$$
1,1,1,2,2,3,4,5,7,9,12,16,21,28,37, \ldots
$$

| | Copyright © 2023 by the Authors. This is an Open Access paper distributed under the |
| :--- | :--- | :--- |
| (c) © | |
| terms and conditions of the Creative Commons Attribution 4.0 International License | |
| (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ | |

Its characteristic equation, $x^{3}-x-1=0$, has one real root $a \cong 1.324 \ldots$ and two conjugate complex roots b and $\bar{b}=c$.

The Binet-type formula of Padovan sequence is

$$
\begin{equation*}
P_{m}=S_{a} a^{m}+S_{b} b^{m}+S_{c} c^{m} \tag{2}
\end{equation*}
$$

where $S_{a}=\frac{(b-1)(c-1)}{(a-c)(a-b)}, S_{b}=\frac{(a-1)(c-1)}{(b-c)(b-a)}, S_{c}=\frac{(a-1)(b-1)}{(c-a)(c-b)}$ for all $m \geq 0$.
The Padovan sequence is named after Richard Padovan [7]. Shannon, Atanassov, Dimitrov and Kritsana [1, 8, 9] studied the combinatorial identities of Padovan sequence and Pell-Padovan sequence.

For all $n \geq 0$, Tribonacci sequence $\left\{T_{n}\right\}$ is given by the recurrence $T_{n+3}=T_{n+2}+T_{n+1}+T_{n}$ with the initial values $T_{0}=0, T_{1}=T_{2}=1$. Its characteristic equation, $x^{3}-x^{2}-x-1=0$ has one real root α and two conjugate complex roots β and γ such that $\alpha \in(1.83,1.84)$ and $|\beta|=|\gamma|<1$. In 1982, Spickerman [10] defined the Binet Formula of Tribonacci numbers as

$$
T_{n}=\frac{\alpha^{n}}{(\alpha-\beta)(\alpha-\gamma)}+\frac{\beta^{n}}{(\beta-\alpha)(\beta-\gamma)}+\frac{\gamma^{n}}{(\gamma-\alpha)(\gamma-\beta)}
$$

for all $n \geq 0$.
Recently, Dresden and Du [3] gave the another form the term of Tribonacci sequence as

$$
T_{n}=\frac{(\alpha-1) \alpha^{n-1}}{4 \alpha-6}+\frac{(\beta-1) \beta^{n-1}}{4 \beta-6}+\frac{(\gamma-1) \gamma^{n-1}}{4 \gamma-6}
$$

for all $n \geq 0$.
Put $c_{\alpha}=\frac{\alpha-1}{4 \alpha-6} \cong 0.61$. Then, the member of Tribonacci sequence satisfy

$$
\begin{equation*}
T_{n}=c_{\alpha} \alpha^{n-1}+e_{n}, \quad \text { with } \quad\left|e_{n}\right|<\frac{1}{\alpha^{n / 2}} \quad \text { for all } n \geq 1 \tag{3}
\end{equation*}
$$

Now, we give our result.
Theorem 1.1. Assume that T_{n} is the n-th term of Tribonacci sequence and P_{m} is the m-th term of Padovan sequence. The solutions of the equation $P_{m}=T_{n}$ are $T_{1}=P_{1}=1, T_{1}=P_{2}=1$, $T_{2}=P_{1}=1, T_{2}=P_{2}=1, T_{3}=P_{3}=2, T_{3}=P_{4}=2, T_{4}=P_{6}=4, T_{5}=P_{8}=7$.

2 Preliminary results

In this section, we give several lemmas which will be useful later.
Lemma 2.1. For $n \geq 2$, and $m \geq 2$, we have

$$
\alpha^{n-2}<T_{n}<\alpha^{n-1} \quad \text { and } \quad a^{m-2}<P_{m}<\alpha^{m-1} .
$$

Proof. The proof of the first inequality is in [2] and second one is in [5].
Let γ be an algebraic number of degree d over Q with minimal primitive polynomial, where the leading coefficient a_{0} is positive.

The logarithmic weight of γ is given by

$$
\begin{equation*}
h(\gamma):=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\gamma^{i}\right|, 1\right\}\right)\right), \tag{4}
\end{equation*}
$$

where $\gamma^{i}, i=1, \ldots, d$ denote the conjugates of γ. Now, we present the theorem of Matveev [6].
Lemma 2.2. Let \mathbb{K} be a set of numbers of order D over \mathbb{Q}. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{t}$ be positive real numbers of \mathbb{K} and $b_{1}, b_{2}, b_{3}, \ldots, b_{t}$ be nonzero integers. Let

$$
\begin{equation*}
\Lambda:=\gamma_{1}^{b_{1}} \gamma_{2}^{b_{2}} \gamma_{3}^{b_{3}} \cdots \gamma_{t}^{b_{t}}-1 \tag{5}
\end{equation*}
$$

The number B is obtained as

$$
\begin{equation*}
B \geq \max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|, \ldots,\left|b_{t}\right|\right\} \tag{6}
\end{equation*}
$$

$A_{1}, A_{2}, A_{3}, \ldots, A_{t}$ are real numbers such that $A_{i} \geq \max \left\{D h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}$. If $\Lambda \neq 0$, then the inequality

$$
\begin{equation*}
\Lambda>\exp \left\{-1.4 \cdot 30^{t+3} t^{4.5} D^{2}(1+\log D)(1+\log B) A_{1} A_{2} A_{3} \cdots A_{t}\right\} \tag{7}
\end{equation*}
$$

holds.
By using the Baker method in Matveev Theorem, an upper limit is obtained. To reduce this bound, we will use the following lemma, which is given by Pethő and Dujella. [4]

Lemma 2.3. Let γ be a real number, M be a positive integer and p / q be a convergent of the continued fraction of γ such that $q>6 M$. Let A, B, μ be real numbers with the conditions $A>0$ and $B>1$. Let ϵ is defined such as $\epsilon:=\|\mu q\|-M\|\gamma q\|$, where $\|$.$\| denotes the distance$ from the nearest integer. Under the assumptions, if $\epsilon>0$, there is no solution for the inequality

$$
\begin{equation*}
0<|m \gamma-n-\mu|<A B^{-m} \tag{8}
\end{equation*}
$$

in positive integers m, n with $m \leq M$ and $m \geq \log (A q / \epsilon) / \log B$.

3 Proof of the Theorem

Firstly, assume that $m \leq 8$. In this case, we see that 2,4 and 7 are the solutions that exceed 1 of the equation $T_{n}=P_{m}$. So, we assume $m>8$. We write the Binet formulas of Tribonacci and Padovan sequences in the equation (1). Then

$$
\begin{equation*}
c_{\alpha} \alpha^{n-1}+e_{n}=S_{a} a^{m}+S_{b} b^{m}+S_{c} c^{m} \tag{9}
\end{equation*}
$$

follows which gives

$$
c_{\alpha} \alpha^{n-1}-S_{a} a^{m}=S_{b} b^{m}+S_{c} c^{m}-e_{n} .
$$

After dividing both sides by $S_{a} a^{m}$, we obtain

$$
c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}-1=\frac{S_{b} b^{m}+S_{c} c^{m}-e_{n}}{S_{a} a^{m}} .
$$

Then

$$
\begin{align*}
\left|c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}-1\right| & =\left|\frac{S_{b} b^{m}+S_{c} c^{m}-e_{n}}{S_{a} a^{m}}\right| \tag{10}\\
& <\left|\frac{S_{b} b^{m}}{S_{a} a^{m}}\right|+\left|\frac{S_{c} c^{m}}{S_{a} a^{m}}\right|+\left|\frac{e_{n}}{S_{a} a^{m}}\right| \\
& <\frac{1 / 2}{a^{m}}+\frac{1 / 2}{a^{m}}+\frac{1}{a^{m}}=\frac{2}{a^{m}} \tag{11}
\end{align*}
$$

holds. Let

$$
\begin{equation*}
\Lambda:=c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}-1 \tag{12}
\end{equation*}
$$

To show $\Lambda \neq 0$, we contrary assume $\Lambda=0$. It yields that $c_{\alpha} S_{a}^{-1}=a^{m} \alpha^{1-n}$. It is obvious that a and α are algebraic integers. $1 / \alpha$ is also algebraic integer since $1 / \alpha$ is the root of the monic polynomial $x^{3}+x^{2}+x-1$. Since product of algebraic integers is also algebraic integer, then it requires that $a^{m}\left(1 / \alpha^{n-1}\right)=a^{m}\left(\alpha^{1-n}\right)$ is an algebraic integer. But this is a contradiction. Because the minimal polynomial $-1+72 x-2872 x^{2}+70500 x^{3}-1169872 x^{4}+12747152 x^{5}-$ $90124672 x^{6}+405561024 x^{7}-1036433728 x^{8}+1036433728 x^{9}$ of $c_{\alpha} S_{a}^{-1}$ is not monic, so $c_{\alpha} S_{a}^{-1}$ is not an algebraic integer, but an algebraic number. We arrive to the claimed fact $\Lambda \neq 0$.

Let $\mathbb{K}=\mathbb{Q}\left(\alpha, a, S_{a}, c_{\alpha}\right)$. Since $c_{\alpha} \in \mathbb{Q}(\alpha)$ and $S_{a} \in \mathbb{Q}(a)$, then we have $\left[\mathbb{Q}\left(\alpha, a, S_{a}, c_{\alpha}\right): \mathbb{Q}\right]=$ $[\mathbb{Q}(\alpha, a): \mathbb{Q}]=[\mathbb{Q}(\alpha, a): \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=9$. This gives that $D=9$. Take $t=4$.

Let

$$
\begin{aligned}
\gamma_{1} & =c_{\alpha}, & & b_{1}=1, \\
\gamma_{2} & =\alpha, & & b_{2}=n-1, \\
\gamma_{3} & =S_{a}, & & b_{3}=-1 \\
\gamma_{4} & =a, & & b_{4}=-m .
\end{aligned}
$$

Since the leading coefficients of the minimal polynomial of c_{α} and S_{a} are 44 and 23 , then logarithmic weights of $c_{\alpha}, \alpha, S_{a}$ and a are obtained as follows

$$
\begin{aligned}
h\left(c_{\alpha}\right) & =\frac{1}{3}\left[\log 44+\log \left(\max \left\{c_{\alpha}, 1\right\}\right)\right]=\frac{1}{3} \log 44 \cong 1.26 \\
h(\alpha) & =\frac{1}{3}[\log 1+\log \alpha+\log 1+\log 1]=\frac{1}{3} \log \alpha \cong 0.201 \\
h\left(S_{a}\right) & =\frac{1}{3}\left[\log 23+\log \left(\max \left\{S_{a}, 1\right\}\right)\right]=\frac{1}{3} \log 23 \cong 1.044 \\
h(a) & =\frac{1}{3}[\log 1+\log a+\log 1+\log 1]=\frac{1}{3} \log a \cong 0.093 .
\end{aligned}
$$

So, we choose A_{1}, A_{2}, A_{3} and A_{4} as

$$
\begin{array}{lll}
A_{1} \geq \max \left\{9 h\left(c_{\alpha}\right), \log c_{\alpha}, 0,16\right\} \cong 11.34 & A_{1}=11.35 \\
A_{2} \geq \max \{9 h(\alpha), \log \alpha, 0,16\} \cong 1.809 & A_{2}=1.81 \\
A_{3} \geq \max \left\{9 h\left(S_{a}\right), \log S_{a}, 0,16\right\} \cong 9.396 & A_{3}=9.4 \\
A_{4} \geq \max \{9 h(a), \log a, 0,16\} \cong 0.837 & A_{4}=0.84 .
\end{array}
$$

Now, we make a decision about B. If we use the inequalities in (2.1) together, we see that

$$
\alpha^{n-2}<T_{n}=P_{m}<a^{m-1} .
$$

After taking logarithm of both sides, we get the inequality

$$
0.6(n-2)<0.29(m-1)
$$

yielding

$$
\begin{equation*}
n-1<m . \tag{13}
\end{equation*}
$$

So, $B=m$.
If we write all the values in the inequality (7), then we get the following inequality by using (7) and (10),

$$
\frac{2}{a^{m}}>\exp \left(-1.4 \cdot 30^{7} 4^{4,5} 9^{2}(1+\log 9)(1+\log m) \cdot 11.35 \cdot 1.81 \cdot 9.4 \cdot 0.84\right)
$$

After taking logarithm of both sides, the inequality

$$
\log 2-m \log a>-1.4 \cdot 30^{7} 4^{4,5} 9^{2}(2 \log 9)(1+\log m) \cdot 11.35 \cdot 1.81 \cdot 9.4 \cdot 0.84
$$

holds. This yields

$$
m<6.78 \cdot 10^{18} \log m
$$

where we use $1+\log 9<2 \log 9$ and $1+\log m<2 \log m$. So, we obtain

$$
m<3.21 \cdot 10^{20} .
$$

From now on, we will apply the Lemma 2.3. Let $M=3.21 \cdot 10^{20}$. Assume that $\Lambda>0$. So,

$$
\begin{equation*}
\log \left(c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}\right)<e^{\log \left(c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}\right)}-1 \tag{14}
\end{equation*}
$$

holds. Combining (12) and (14),

$$
\log \left(c_{\alpha} \alpha^{n-1} S_{a}^{-1} a^{-m}\right)<\frac{2}{a^{m}}
$$

follows. If $\Lambda<0$, the inequality $\left|e^{\Lambda}-1\right|<\frac{1}{2}$ holds as $m>8$. This yields that $e^{|\Lambda|}<2$ and

$$
|\Lambda|<e^{|\Lambda|}-1=e^{|\Lambda|}\left|e^{\Lambda}-1\right|<\frac{4}{a^{m}}
$$

In this case,

$$
|\Lambda|<\frac{4}{a^{m}}
$$

is obtained. The fact that $n<m$ gives that

$$
\left|(n-1) \log \alpha-m \log a+\log c_{\alpha}-\log S_{a}\right|<\frac{4}{a^{m}}
$$

Together with $n-1<m$, we get

$$
\left|(n-1) \log \alpha-m \log a+\log c_{\alpha}-\log S_{a}\right|<2 a^{-(n-1)},
$$

After dividing by $\log a$, we obtain

$$
\left|(n-1) \frac{\log \alpha}{\log a}-m+\frac{\log \left(c_{\alpha} / S_{a}\right)}{\log a}\right|<\frac{4}{\log a} \cdot a^{-(n-1)} .
$$

If we choose

$$
\gamma=\frac{\log \alpha}{\log a}, \quad \mu=\frac{\log \left(c_{\alpha} / S_{a}\right)}{\log a}, \quad A=\frac{4}{\log a}, \quad B=a
$$

on (8), and q_{n} be the denominator of the n-th convergent of the continued fraction of γ. We choose

$$
q_{39}=2160781423075809077554>6 M
$$

and $\epsilon:=\left\|\mu q_{39}\right\|-M\left\|\gamma q_{39}\right\| \cong 0.0569 \ldots$. By the result of Dujella and Pethő (Lemma 2.3), we get

$$
m \geq \log (A q / \epsilon) / \log B=194.328
$$

So $m \leq 194$. A quick calculation by Mathematica shows that there is no solution of the equation $T_{n}=P_{m}$ for $9<m \leq 194$. So, the proof is completed.

Acknowledgements

The authors express their gratitude to the anonymous reviewers for the instructive suggestions and remarks.

References

[1] Atanassov, K., Dimitrov, D., \& Shannon, A. (2009). A remark on ψ-function and PellPadovan's sequence. Notes on Number Theory and Discrete Mathematics, 15(2), 1-11.
[2] Bravo, J. J., \& Luca, F. (2012). Powers of two in generalized Fibonacci sequence. Revista Colombiana de Matemáticas, 46, 67-79.
[3] Dresden, G. P. B., \& Du, Z. (2014). A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17(4), Article 14.4.7.
[4] Dujella, A., \& Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics, Oxford II. Ser., 49(195), 291-306.
[5] Lomeli, A. C. G., \& Hernandez, S. H. (2019). Repdigits as sums of two Padovan numbers. Journal of Integer Sequences, 22, Article 19.2.3.
[6] Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya, 64, 125-180. English: Izvestiya: Mathematics, 64 (2000), 1217-1269.
[7] Padovan, R. (2002). Dom Hans Van Der Laan and the Plastic Number. Kim, W., \& Rodrigues, J. F. (Eds.) Architecture and Mathematics, Fucecchio (Florence): Kim Williams Books, pp. 181-193.
[8] Sokhuma, K. (2013). Matrices formula for Padovan and Perrin sequences. Applied Mathematics Sciences, 7(142), 7093-7096.
[9] Shannon, A. G., Anderson, P. G., \& Horadam A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science and Technology, 37(7), 825-831.
[10] Spickerman, W. R. (1982). Binet's formula for the Tribonacci numbers. The Fibonacci Quarterly, 20, 118-120.

