Krassimir Atanassov, Dimitar Dimitrov and Anthony Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 15, 2009, Number 2, Pages 1—44
Download full paper: PDF, 242 Kb
Details
Authors and affiliations
Krassimir Atanassov
CLBME – Bulgarian Academy of Sciences
P.O.Box 12, Sofia-1113, Bulgaria
Dimitar Dimitrov
CLBME – Bulgarian Academy of Sciences
P.O.Box 12, Sofia-1113, Bulgaria
Anthony Shannon
Warrane College, University of New South Wales
Kensington, 1465, Australia
References
- Atanassov, K. An arithmetic function and some of its applications. Bull. of Number Theory and Related Topics, Vol. IX (1985), No. 1, 18-27.
- Atanassov, K., D. Dimitrov, A. Shannon. A remark on ψ-function and Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, Vol. 15, 2009, No. 1, 1-11.
- Atanassov K., A. Shannon, J. Clarke, A digit sum arithmetical function. Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 37-49.
- Shannon, A.G., P.G. Anderson, A.F. Horadam. Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science & Technology. 37, 7, 2006, 825-831.
- Shannon A., A. Horadam, Generalized staggered sums. The Fibonacci Quarterly, Vol. 29 (1991), No. 1, 47-51.
- Shannon, A.G., A.F. Horadam, P.G. Anderson. The auxiliary equation associated with the plastic number. Notes on Number Theory and Discrete Mathematics. 12, 1, 2006, 1-12.
- Shannon, A.G., C.K. Wong. Some properties of generalized third order Pell numbers. 13th International Conference on Fibonacci Numbers and Their Applications, University of Patras, Greece, 7-11 July 2008.
Related papers
- Vassilev-Missana, M. (2009). A problem related to Fibonacci-like type sequences. Notes on Number Theory and Discrete Mathematics, 15(3), 23-24.
- Irmak, N., & Açikel, A. (2023). Intersection of Padovan and Tribonacci sequences. Notes on Number Theory and Discrete Mathematics, 29(2), 354-359.
Cite this paper
Atanassov, K., Dimitrov, D., & Shannon A. (2009). A remark on ψ-function and Pell-Padovan’s sequence. Notes on Number Theory and Discrete Mathematics, 15(2), 1-44.