Intersection of Padovan and Tribonacci sequences

Nurretin Irmak and Abdullah Açikel
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 2, Pages 354–359
DOI: 10.7546/nntdm.2023.29.2.354-359
Full paper (PDF, 276 Kb)

Details

Authors and affiliations

Nurretin Irmak
Department of Basic Science, Natural and Engineering Faculty,
Konya Technical University, Konya, Turkey

Abdullah Açikel
Hassa Vocational School, Hatay Mustafa Kemal University,
Hatay, Turkey

Abstract

Assume that T_{n} is the n-th term of Tribonacci sequence and P_{m} is the m-th term of Padovan sequence. In this paper we solve the equation T_{n}=P_{m} completely.

Keywords

  • Tribonacci numbers
  • Padovan numbers
  • Baker methods
  • Linear logarithms

2020 Mathematics Subject Classification

  • 11J86
  • 11D72
  • 11B39

References

  1. Atanassov, K., Dimitrov, D., & Shannon, A. (2009). A remark on ψ-function and Pell–Padovan’s sequence. Notes on Number Theory and Discrete Mathematics, 15(2), 1–11.
  2. Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequence. Revista Colombiana de Matemáticas, 46, 67–79.
  3. Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for 𝑘-generalized Fibonacci numbers. Journal of Integer Sequences, 17(4), Article 14.4.7.
  4. Dujella, A., & Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics, Oxford II. Ser., 49(195), 291–306.
  5. Lomeli, A. C. G., & Hernandez, S. H. (2019). Repdigits as sums of two Padovan numbers. Journal of Integer Sequences, 22, Article 19.2.3.
  6. Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya, 64, 125–180. English: Izvestiya: Mathematics, 64 (2000), 1217–1269.
  7. Padovan, R. (2002). Dom Hans Van Der Laan and the Plastic Number. In: Kim, W., & Rodrigues, J. F. (Eds.) Architecture and Mathematics, Fucecchio (Florence): Kim Williams Books, pp. 181–193.
  8. Sokhuma, K. (2013). Matrices formula for Padovan and Perrin sequences. Applied Mathematics Sciences, 7(142), 7093–7096.
  9. Shannon, A. G., Anderson, P. G., & Horadam A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science and Technology, 37(7), 825–831.
  10. Spickerman, W. R. (1982). Binet’s formula for the Tribonacci numbers. The Fibonacci Quarterly, 20, 118–120.

Manuscript history

  • Received: 13 October 2022
  • Revised: 16 March 2023
  • Accepted: 10 May 2023
  • Online First: 15 May 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Irmak, N., & Açikel, A. (2023). Intersection of Padovan and Tribonacci sequences. Notes on Number Theory and Discrete Mathematics, 29(2), 354-359, DOI: 10.7546/nntdm.2023.29.2.354-359.

Comments are closed.