A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 16, 2010, Number 4, Pages 14–17
Full paper (PDF, 117 Kb)
Details
Authors and affiliations
A. G. Shannon
Warrane College, The University of New South Wales,
PO Box 123, Kensington, NSW 1465, Australia
Abstract
Some results of Gould for the ordinary Bernoulli and Euler polynomials are extended to analogous results built upon the Fermatian exponentials.
Keywords
- Fermatian numbers
- Fibonacci numbers
- Bernoulli polynomials
- Euler polynomials
AMS Classification
- 11B65
- 11B39
- 05A30
References
- Carlitz, L. q-Bernoulli Numbers and Polynomials. Duke Mathematical Journal. 15, 1948, 987-1000.
- Carlitz, L. Expansions of q-Bernoulli Numbers. Duke Mathematical Journal. 25, 1958, 355-364.
- Gould, H.W. Generating Functions for Products of Fibonacci Numbers. The Fibonacci Quarterly. 1 (2), 1963: 1-16.
- Gould, H.W. Binomial Coefficients, the Bracket Function, and Compositions with Relatively Prime Summands. The Fibonacci Quarterly. 2 (1964): 241-260.
- Gould, H.W. Remarks on Compositions of Numbers into Relatively Prime Parts. Notes on Number Theory and Discrete Mathematics. 11(3) (2005): 1-6.
- Hoggatt, Verner E., Jr. Fibonacci Numbers and Generalized Binomial Coefficients. The Fibonacci Quarterly. 5 (4), 1967: 383-400.
- Shannon, A.G. Some Fermatian Inversion Formulae. Notes on Number Theory and Discrete Mathematics. 13 (4), 2007: 7-10.
- Vorobev, N.N. Fibonacci Numbers. Oxford: Pergamon.
Related papers
Cite this paper
Shannon, A. G. (2010). Fermatian analogues of Gould’s generalized Bernoulli polynomials. Notes on Number Theory and Discrete Mathematics, 16(4), 14-17.