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1. Introduction

It is of interest to consider generalized Bernoulli and Euler polynomials analogous to those
of Gould [3]. Let

M = k (1.1)
C(f)—l - ;Bkz(xac)t /gk'
and
2C(tx) %
s =2 Eelraiz
define B, (x,c) and E,_ (x,c), in which
C(t) =FE, (ct) (12)

where E, (t) is the Fermatian exponential.
This is analogous to the ordinary situation where

c'=e’ if C=e".

In Gould’s work, C =b/a, in which
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a=%(l+\/§) and b=%(1—\/§)

are the roots of x> —x—1=0.

2. Fermatian Numbers

We can define [7] the n-th reduced Fermatian number in terms of

-q9'q_ (n<0)
q,= 1 (n=0) @.1)
l+g+q +..+q"" (n>0)
so that
L, =n,
and
1!=nl,
where
EZn!::EZnEZn—l.“EZI. (2'2)

Accordingly, we define
e 23
E(0)=Yx"/z,! 2

n=0
Note that
E/(x)=e".

3. Results of Gould and Hoggatt

Incidentally, Gould’s C and Hoggatt’s C,, [6] can be related when p=-¢=1 in the
equality x* — px+¢ =0:

c =b %EE Ck+1,k+1 Aon (3.1)
F_F_,..F
g C — kT k2 h ——g=1
Proof: Tk FF,.F, F, when p =—¢q
=1/F,

where F, is the k" Fibonacci number. Then
b ll(im Cropn/Cue = bll(imF ¢/ Fra
=b/a, from Vorob’ev [4].
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4. Main Result

From (1.1) we get
2 tE, (ctx)
kZ(;Bkz(x.c)tk lz! = m
_ 1, (ctx)
¢ E. (ct)—l

~ 1S58, (w)er) /2!
C k=0

which gives
B.(x,c) = B, (x)c*! 4.1)

as a relation between the analogues of the generalized and ordinary Fermatian Bernoulli
polynomials. A similar relation can be found for Euler polynomials which the interested
reader might like to pursue.

When z = 1 we get the corresponding relation for ordinary Bernoulli polynomials

B(x,c) =B, (x)loge)™, 1)

which agrees with Gould.

5. Concluding Comments

The paper by Gould [3] has a number of interesting and elegant relationships among
Bernoulli, Euler numbers with Fibonacci, Lucas numbers. Carlitz too explored some of
these types of analogues [1, 2]. Another avenue of research would be to find Fermatian
analogues of binomial functions and the bracket function [4, 5].
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