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1.  Introduction 
 
It is of interest to consider generalized Bernoulli and Euler polynomials analogous to those 
of Gould [3]. Let 

 ( )
( ) 1−tC

txtC ( ) !/,
0

k
k

k
kz ztcxB∑

∞

=

=  
(1.1)

and 

 ( )
( ) 1

2
+tC
txC ( ) !/,

0
k

k

k
kz ztcxE∑

∞

=

=  

define ( )cxBkz ,  and ( )cxEkz , , in which 
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where ( )tEz  is the Fermatian exponential.  
This is analogous to the ordinary situation where  

ctt ec =  if CeC = . 

 
In Gould’s work, abC /= , in which  
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are the roots of 012 =−− xx .  
 
 
2.  Fermatian Numbers 
 
We can define [7] the n-th reduced Fermatian number in terms of 
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so that 
,1 nn =  
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Accordingly, we define 
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Note that 
xexE =)(1 . 

 
 
3.  Results of Gould and Hoggatt 
 
Incidentally, Gould’s C and Hoggatt’s nkC  [6] can be related when 1=−= qp  in the 
equality 02 =+− qpxx : 
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−−=  when 1=−= qp  
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where kF  is the thk  Fibonacci number.  Then 
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 ab /= , from Vorob’ev [4].
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4.  Main Result 
 
From (1.1) we get 
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which gives 

 ( )cxBkz , ( ) 1−= k
kz cxB  (4.1)

 

as a relation between the analogues of the generalized and ordinary Fermatian Bernoulli 
polynomials. A similar relation can be found for Euler polynomials which the interested 
reader might like to pursue.  

When z = 1 we get the corresponding relation for ordinary Bernoulli polynomials 
 

 ( )cxBk , ( )( ) 1log −= k
kz cxB , (5.1)

 

which agrees with Gould. 
 
 
5.  Concluding Comments 
 
The paper by Gould [3] has a number of interesting and elegant relationships among 
Bernoulli, Euler numbers with Fibonacci, Lucas numbers. Carlitz too explored some of 
these types of analogues [1, 2]. Another avenue of research would be to find Fermatian 
analogues of binomial functions and the bracket function [4, 5]. 
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