Peter J.-S. Shiue, Anthony G. Shannon, Shen C. Huang, Jorge E. Reyes
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 1, Pages 98–129
DOI: 10.7546/nntdm.2023.29.1.98-129
Full paper (PDF, 388 Kb)
Details
Authors and affiliations
Peter J.-S. Shiue
![]()
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America
Anthony G. Shannon ![]()
Warrane College, University of New South Wales
Kensington, NSW 2033, Australia
Shen C. Huang ![]()
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America
Jorge E. Reyes
![]()
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America
Abstract
A generalized Computation procedure for construction of the Ramanujan-type from a given general cubic equation and a cosine Ramanujan-type identity is developed from detailed analyses of the properties of Ramanujan-type cubic equations. Examples are provided together with cubic Shevelev sums.
Keywords
- Ramanujan cubic polynomials
- Ramanujan cubic polynomials of the second kind
- Cubic Shevelev sum
2020 Mathematics Subject Classification
- 11C08
- 11D25
- 11Y99
References
- Boyer, C. B., & Merzbach, U. C. (2011). A History of Mathematics. John Wiley & Sons.
- Chen, W. Y. C. (2022). Cubic equations through the looking glass of Sylvester. The College Mathematics Journal, 53(5), 396–398.
- De Pillis, L. G. (1998). Newton’s cubic roots. Gazette of the Australian Mathematical Society, 25(5), 236–241.
- Dresden, G., Panthi, P., Shrestha, A., & Zhang, J. (2019). Cubic polynomials, linear shifts, and Ramanujan simple cubics. Mathematics Magazine, 92(5), 374–381.
- Gilbert, L., & Gilbert, J. (2014). Elements of Modern Algebra (8th ed.). Cengage Learning.
- Hillman, A. P., & Alexanderson, G. L. (1988). A First Undergraduate Course in Abstract Algebra. Brooks/Cole.
- Liao, H.-C., Saul, M., & Shiue, P. J.-S. (in press). Revisiting the general cubic: A
simplification of Cardano’s solution. The Mathematical Gazette. - McLeish, J. (1994). The Story of Numbers. Ballantine Books.
- Ramanujan, S. (1957). Notebooks of Srinivasa Ramanujan (2 volumes). Tata Institute of Fundamental Research, Bombay.
- Shannon, A. G. (1974). The Jacobi–Perron algorithm and Bernoulli’s iteration. The Mathematics Student, 42, 52–56.
- Shevelev, V. (2007). On Ramanujan cubic polynomials. South East Asian Mathematics and Mathematical Sciences, 8, 113–122.
- Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2022). Notes on efficient computation of Ramanujan cubic equations. Notes on Number Theory and Discrete Mathematics, 28(2), 350–375.
- Van der Poorten, A. (1996). Notes on Fermat’s last theorem. Computers & Mathematics with Applications, 31(11), 139–139.
- Wang, K. (2021). On Ramanujan type identities and Cardano formula. Notes on Number Theory and Discrete Mathematics, 27(3), 155–174.
- Wituła, R. (2010). Full description of Ramanujan cubic polynomials. Journal of Integer Sequences, 13, Article 10.5.7.
- Wituła, R. (2010). Ramanujan cubic polynomials of the second kind. Journal of Integer Sequences, 13, Article 10.7.5.
- Wituła, R. (2012). Ramanujan type trigonometric formulae. Demonstratio Mathematica, 45(4), 779–796.
Manuscript history
- Received: 25 December 2022
- Revised: 28 February 2023
- Accepted: 2 March 2023
- Online First: 6 March 2023
Copyright information
Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2022). Notes on efficient computation of Ramanujan cubic equations. Notes on Number Theory and Discrete Mathematics, 28(2), 350–375.
- Wang, K. (2021). On Ramanujan type identities and Cardano formula. Notes on Number Theory and Discrete Mathematics, 27(3), 155–174.
Cite this paper
Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2023). A generalized computation procedure for Ramanujan-type identities and cubic Shevelev sum. Notes on Number Theory and Discrete Mathematics, 29(1), 98-129, DOI: 10.7546/nntdm.2023.29.1.98-129.
