Kai Wang

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 3, Pages 155–174

DOI: 10.7546/nntdm.2021.27.3.155-174

**Full paper (PDF, 220 Kb)**

## Details

### Authors and affiliations

Kai Wang

*2346 Sandstone Cliffs Dr, Henderson NV, USA*

### Abstract

In this paper we will prove some Ramanujan type identities such as

### Keywords

- Ramanujan type identity
- Trigonometric function
- Cubic equation
- Radicals

### 2020 Mathematics Subject Classification

- Primary: 11L03
- Secondary: 33B10

### References

- Berndt, B., & Bhargava, S. (1993). Ramanujan–for lowbrows, American Mathematical Monthly, 100, 644–656.
- Ramanujan, S. (1957). Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay.
- Shevelev, V. (2009). On Ramanujan cubic polynomials. South East Asian Journal of Mathematics and Mathematical Sciences, 8(1), 113–122.
- Wikipedia contributors. (2021, February 2). Cubic function. In Wikipedia, The Free Encyclopedia. Retrieved August 2, 2021, from https://en.wikipedia.org/w/index.php?title=Cubic_function&oldid=1004476794.
- Wikipedia contributors. (2021, July 30). Heptagonal triangle. In Wikipedia, The Free Encyclopedia. Retrieved August 2, 2021, from https://en.wikipedia.org/w/index.php?title=Heptagonal_triangle&oldid=1036177823.
- Wituła, R. (2009). Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2π=7. Journal of Integer Sequences, 12, Article 09.8.5.
- Wituła, R. (2012). Ramanujan type trigonometric formulae. Demonstratio Mathematica, XLV(4), 779–796.
- Wróbel, A., Hetmaniok, E., Pleszczyński, M., & Wituła, R. (2016). On improvement of the numerical application for Cardano’s formula in Mathematica software, Symposium for Young Scientists in Technology, Engineering and Mathematics, Catania, Italy, September 27–29, 2015, 71–78. Available online at http://ceur-ws.org/Vol-1543/p10.pdf.

## Related papers

- Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2022). Notes on efficient computation of Ramanujan cubic equations.
*Notes on Number Theory and Discrete Mathematics*, 28(2), 350–375. - Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2023). A generalized computation procedure for Ramanujan-type identities and cubic Shevelev sum.
*Notes on Number Theory and Discrete Mathematics*, 29(1), 98-129

## Cite this paper

Wang, K. (2021). On Ramanujan type identities and Cardano formula. *Notes on Number Theory and Discrete Mathematics*, 27(3), 155-174, DOI: 10.7546/nntdm.2021.27.3.155-174.