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Abstract: In this paper we will prove some Ramanujan type identities such as
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1 Introduction

Ramanujan proved the following most well-known identities in his notebook [2]:
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It is natural to ask if there are similar identities for sine and tangent functions. It turns out that
there are similar identities for sine and tangent functions at angles π/7’s [6]. Since we could not
find such identities for sine and tangent functions at angles π/9’s in the literature so we decide to
find similar identities. This is the motivation of this research.

However, after reviewing, it turned out that some type of these inequalities have already been
considered in papers [7, 8].

The purpose of this paper is to prove identities which are similar to identities (1), (2) for
sine and tangent functions. The identities are much more complicated. Our main results are the
following.

Theorem 1.1.
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3

√
tan
(π
9

)
+ 3

√
tan

(
4π

9

)
+ 3

√
tan

(
7π

9

)
=

(
− 18
√
3
)(

3

√
−3 3
√
3 + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9))

)
, (5)

1

3

√
tan
(
π
9

) + 1

3

√
tan
(
4π
9

) + 1

3

√
tan
(
7π
9

) =

(
− 1

18
√
3

)(
3

√
− 3
√
9) + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9))

)
. (6)
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Theorem 1.4.
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The Equations (1)–(10) can be derived using the following result of Ramanujan [1–3].

Theorem 1.5. Let α, β, and γ denote the roots of a cubic equation

x3 − ax2 + bx− 1 = 0. (11)

If α, β, γ are real and the values of the cubic roots of these numbers below are real, then

3
√
α + 3

√
β + 3
√
γ = 3
√
a+ 6 + 3t, (12)

and
1
3
√
α
+

1
3
√
β
+

1
3
√
γ
=

3
√
b+ 6 + 3t, (13)

where t is a real root of the equation

t3 − 3(a+ b+ 3)t− (ab+ 6(a+ b) + 9) = 0. (14)

We assume henceforward that all the discussed cubic equations of the form (11) satisfy the
assumptions given in the theorem above. We will call Equation (14) an associated Ramanujan
Equation. The Ramanujan equation can be solved using Cardano formula. For our purpose, we
reformulate it in the following form.
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Theorem 1.6 ([4]). For a cubic equation,

t3 + pt+ q = 0. (15)

a real solution is given by
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When we studied the term inside the square root in the Cardano formula (Equation (16)) we
found out that this term is a complete square and it can be expressed in term of roots of the
Equation (11). We believe that this formula is also new. This formula makes the computation of
the solution for Ramanujan equation much easier when the coefficients of a cubic equation are
not integers.

Theorem 1.7. Let α, β, and γ denote the roots of a cubic equation

x3 − ax2 + bx− 1 = 0, (17)

where a, b are possibly complex numbers and let

x3 + px+ q = 0 (18)

be the associated Ramanujan equation. Then
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Our methods and proofs are completely different from these in [6]. In the next Section 2, we
will introduce some notations and prove some basic properties of trigonometric functions. The
proof for Theorem 1.7 is given in the Section 3. We then prove the formula for sums of cubic
roots for sine and tangent functions in Sections 4, 5, 6, 7, respectively.

2 Notations and properties of sine and tangent functions

For the rest of this paper, for convenience, let θ = π

9
and let δ = π

7
.

We will use following well-known results (see [5]).

Proposition 2.1. The numbers {sin(θ), sin(2θ), sin(14θ)} are the roots of the equation
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4
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8

√
3 = 0 (20)

The numbers {cos 2θ, cos 4θ, cos 8θ} are the roots of the equation
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4
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8
= 0. (21)

The numbers {tan(θ), tan(4θ), tan(7θ)} are the roots of the equation

x3 − 3
√
3x2 − 3x+

√
3 = 0. (22)
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Note that we cannot use
{sin(2θ), sin(4θ), sin(8θ)}

for Equation (20) nor
{tan(2θ), tan(4θ), tan(8θ)}

for Equation (22). Note also for sine function, we rotate

{sin(θ), sin(2θ), sin(14θ)}

and for tangent function, we rotate

{tan(θ), tan(4θ), tan(7θ)}.

We will use following well-known results (see [5]).

Proposition 2.2. The numbers {sin(2δ), sin(4δ), sin(8δ)} are the roots of the equation

x3 −
√
7

2
x2 +

√
7

8
= 0.

The numbers {cos 2δ, cos 4δ, cos 8δ} are the roots of the equation

x3 +
1

2
x2 − 1

2
x− 1

8
= 0.

The numbers {tan 2δ, tan 4δ, tan 8δ} are the roots of the equation

x3 +
√
7x2 − 7x+

√
7 = 0.

Definition 2.3. Let {α, β, γ} be three numbers. For a function f(x) with one variable, let∑
f(α) = f(α) + f(β) + f(γ).

For a function f(x, y) with two variables, let∑
f(α, β) = f(α, β) + f(β, γ) + f(γ, α).

For a function f(x, y, z) with three variables, let∑
f(α, β, γ) = f(α, β, γ) + f(β, γ, α) + f(γ, α, β).

Definition 2.4. For an integer m, let

S9(m) =
∑

sinm(θ),

C9(m) =
∑

cosm(2θ),

T9(m) =
∑

tanm(θ).
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Definition 2.5. For integers m,n, let
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∑
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∑
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∑
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√
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T9(−3) =
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W9(1, 2) = 9
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= −405

Then {W9(1, 2),W9(2, 1)} are the roots of quadratic equation

x2 − 6
√
3x− 405 = 0. (23)

The roots for Equation (23) are {9
√
3,−15

√
3}.

With a help from calculator, we have

W9(1, 2) = 9
√
3, W9(2, 1) = −15

√
3.

Similarly, for π/7 we have

Definition 2.9. For an integer m, let

S7(m) =
∑

sinm(2δ),

C7(m) =
∑

cosm(2δ),

T7(m) =
∑

tanm(2δ).
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Definition 2.10. For integers m,n, let

U7(m,n) =
∑

sinm(2δ) sinn(4δ),
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∑
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√
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Proposition 2.12. With the above notations, for n = 0, . . . , 3,
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√
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7
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Proof. Note that T7(n) satisfy the following recurrence relations:
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7T7(n− 1) + 77T (n− 2)−

√
7T7(n− 3),

T7(−n) =
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√
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T7(3) = −
√
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√
7T7(0)

= (−21− 7− 3)
√
7

= −31
√
7.

T7(−1) =
√
7T7(0)− T7(1)−

√
7

7
T7(2)

= 3
√
7 +
√
7− 21

(√
7

7

)
=
√
7.

T7(−2) =
√
7T7(−1)− T7(0)−

√
7

7
T7(1)

=
√
7
√
7− 3−

√
7

7
(−
√
7)

= 7− 3 + 1

= 5.
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T7(−3) =
√
7T7(−2)− T7(−1)−

√
7

7
T7(0)

= 5
√
7−
√
7− 3

√
7

7

= (35− 7− 3)

√
7

7

=
25
√
7

7
.

Proposition 2.13.

W7(1, 2) = 9
√
7,

W7(2, 1) =
√
7.

Proof.

W7(1, 2) +W7(2, 1) = T7(1)W7(1, 1)− 3R7

= (−
√
7)(−7)− 3(−

√
7)

= 7
√
7 + 3

√
7

= 10
√
7.

W7(1, 2)W7(2, 1) =
(
R2

7

)(∑ tan(2δ)

tan(4δ)

)(∑ tan(4δ)

tan(2δ)

)
= 7

(
3 +

1

R7

∑
tan3(2δ) +R7

∑ 1

tan3(2δ)

)
= 7

(
3 +

1

R7

T7(3) +R7T7(−3)
)

= 7

(
3− 1√

7
T7(3) + (−

√
7)T7(−3)

)
= 7

(
3− 1√

7
(−31

√
7) + (−

√
7)(

25
√
7

7
)

)
= 7(3 + 31− 25)

= 63.

Then {W7(1, 2),W7(2, 1)} are the roots of quadratic equation

x2 − 10
√
7x+ 63 = 0. (24)

The roots for Equation (24) are {9
√
7,
√
7}.

With a help from calculator, we have

W7(1, 2) = 9
√
7,W7(2, 1) =

√
7.
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3 Proof of Theorem 1.7

Proof. Let

u =
∑ α

β
, v =

∑ β

α
.

Then

u+ v =
∑ α

β
+
∑ β

α

=
(∑

α
)(∑ 1

α

)
− 3

= ab− 3.∑
α3 = (

∑
α)3 − 3

∑
α2β − 3

∑
αβ2 − 6αβγ

= (
∑

α)3 − 3
∑ α

β
− 3

∑ β

α
− 6

= a3 − 3(ab− 3)− 6

= a3 − 3ab+ 3.∑ 1

α3
= (
∑ 1

α
)3 − 3

∑ 1

α2β
− 3

∑ 1

αβ2
− 6

αβγ

= (
∑ 1

α
)3 − 3

∑ β

α
− 3

∑ α

β
− 6

= b3 − 3(ab− 3)− 6

= b3 − 3ab+ 3.

uv =

(∑ α

β

)(∑ β

α

)
=

(
α

β

)(∑ β

α

)
+

(
β

γ

)(∑ β

α

)
+
(γ
α

)(∑ β

α

)
= 3 +

∑ α2

βγ
+
∑ βγ

α2

= 3 +
∑

α3 +
∑ 1

α3

= 3 + (a3 − 3ab+ 3) + (b3 − 3ab+ 3)

= a3 + b3 − 6ab+ 9.

Now we obtain

(u− v)2 = (u+ v)2 − 4uv

= (ab− 3)2 − 4(a3 + b3 − 6ab+ 9)

= ((ab)2 − 6ab+ 9)− 4(a3 + b3 − 6ab+ 9)

= (ab)2 − 4a3 − 4b3 + 18ab− 27,
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and, on the other hand,

q2 +
4p3

27
= (ab+ 6(a+ b) + 9)2 − 4(a+ b+ 3)3

= (ab)2 + 36(a+ b)2 + 81 + 12ab(a+ b) + 108(a+ b) + 18ab

− 4(a3 + b3 + 27 + 3a2b+ b2a+ 9a2 + 9b2 + 2a+ 27b+ 18ab)

= (ab)2 + 36 ∗ (a2 + 2ab+ b2) + 81 + 12ab(a+ b) + 108(a+ b) + 18ab

− (4a3 + 4b3 + 108 + 12a2b+ 12b2a+ 36a2 + 36b2 + 108a+ 108b+ 72ab)

= (ab)2 − 4a3 − 4b3 + 18ab− 27

= (u− v)2.

This completes the proof.

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

Proof. Let

α = − 2
6
√
3
sin(θ), β = − 2

6
√
3
sin(2θ), γ = − 2

6
√
3
sin(14θ).

∑
α =

(
− 2

6
√
3

)
(sin(θ) + sin(2θ) + sin(14θ))

=

(
− 2

6
√
3

)
(0)

= 0.∑
αβ =

(
4
6
√
9

)
(sin(θ) sin(2θ) + sin(2θ) sin(14θ) + sin(14θ)) sin(θ))

=

(
4
6
√
9

)(
−3

4

)
= − 3

3
√
3

= − 3
√
9.

αβγ =

(
− 8√

3

)
(sin(θ) sin(2θ) sin(14θ))

=

(
− 8√

3

)(
−
√
3

8

)
= 1.

It follows that {α, β, γ} are roots of the equation:

x3 − 3
√
9x− 1 = 0. (25)

165



The associated Ramanujan equation is equal to

t3 + pt+ q = 0, (26)

where

p = 3
3
√
9− 9,

q = 6
3
√
9− 9.

We now compute
∑α

β
and

∑β

α
.

u =
∑ α

β

=
sin(θ)

sin(2θ)
+

sin(2θ)

sin(14θ)
+

sin(14θ)

sin(θ)

=
sin(θ)

sin(2θ)
+

sin(7θ)

sin(14θ)
− sin(4θ)

sin(8θ)

=
sin(θ)

2 sin(θ) cos(θ)
+

sin(7θ)

2 sin(7θ) cos(7θ)
− sin(4θ)

2 sin(4θ) cos(4θ)

=
1

2

(
1

cos(θ)
+

1

cos(7θ)
− 1

cos(4θ)

)
= −1

2

∑ 1

cos(2θ)

= −1

2

∑ cos(2θ) cos(4θ)

cos(2θ) cos(4θ) cos(8θ)

=

(
−1

2

)(
1

Q9

)∑
cos(4θ) cos(8θ)

=

(
−1

2

)
(−8)

(
−3

4

)
= −3.

In the following proofs, we use double angle formula for sine function.

v =
∑ β

α

=
sin(2θ)

sin(θ)
+

sin(14θ)

sin(2θ)
+

sin(θ)

sin(14θ)

=
sin(2θ)

sin(θ)
+

sin(14θ)

sin(7θ)
− sin(8θ)

sin(4θ)

=
2 sin(θ) cos(θ)

sin(θ)
+

2 sin(7θ) cos(7θ)

sin(7θ)
− 2 sin(4θ) cos(4θ)

sin(4θ)

= 2 (cos(θ) + cos(7θ)− cos(4θ))

= −2
∑

cos(2θ)

= 0.
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By Theorem 1.7,

q2 +
4p3

27
=

(∑ α

β
−
∑ β

α

)2

= 9.

By Theorem 1.6, a real solution for the associated Ramanujan equation is given by

t =
1
3
√
2

3

√
−q +

√
q2 +

4p3

27
+

1
3
√
2

3

√
−q −

√
q2 +

4p3

27

=
1
3
√
2

3

√
−(6 3
√
9− 9) + 3 +

1
3
√
2

3

√
−(6 3
√
9− 9)− 3

=
1
3
√
2

3

√
−6 3
√
9 + 9 + 3 +

1
3
√
2

3

√
−6 3
√
9 + 9− 3

=
1
3
√
2

3

√
−6 3
√
9 + 12 +

1
3
√
2

3

√
−6 3
√
9 + 6

=
1
3
√
2

3

√
12− 6

3
√
9 +

1
3
√
2

3

√
6− 6

3
√
9

=
3

√
6− 3

3
√
9 +

3

√
3− 3

3
√
9.

By Theorem 1.5,

∑
3
√
α = 3

√
6 + 3

(
3

√
6− 3

3
√
9 +

3

√
3− 3

3
√
9

)
.

and ∑ 1
3
√
α

=
3
√
b+ 6 + 3t

= 3

√
− 3
√
9 + 6 + 3

(
3

√
6− 3

3
√
9 +

3

√
3− 3

3
√
9

)
This implies Equations (3) and (4) in Theorem 1.1.

5 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Proof. Let

α = − 1
6
√
3
tan(θ), β = − 1

6
√
3
tan(4θ), γ = − 1

6
√
3
tan(7θ).

a =
∑

α

=

(
− 1

6
√
3

)
(tan(θ) + tan(4θ) + tan(7θ))
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=

(
− 1

6
√
3

)(
3
√
3
)

=

(
−3 6
√
27

6
√
3

)
= −3 6

√
9

= −3 3
√
3.

b =
∑

αβ

=

(
1
3
√
3

)∑
tan(θ) tan(4θ)

=

(
1
3
√
3

)
(−3)

= − 3
√
9.

αβγ =

(
− 1√

3

)
(tan(θ) tan(4θ) tan(7θ))

= 1.

It follows that {α, β, γ} are roots of the equation:

x3 + 3
3
√
3x2 − 3

√
9x− 1 = 0. (27)

The associated Ramanujan equation is equal to

t3 + pt+ q = 0, (28)

where

p = 3(3
3
√
3 +

3
√
9− 3),

q = −(18− 6(3
3
√
3− 3
√
9)).

We now compute
∑α

β
and

∑β

α

u =
∑ α

β

=
∑ tan(θ)

tan(4θ)

=
∑ tan2(θ) tan(7θ)

tan(θ) tan(4θ) tan(7θ)

=
1

R9

∑
tan2(θ) tan(7θ)

= −
(

1√
3

)
W9(1, 2)

= −
(

1√
3

)
(9
√
3)

= −9.
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v =
∑ β

α

=
∑ tan(4θ)

tan(θ)

=
∑ tan2(4θ) tan(7θ)

tan(θ) tan(4θ) tan(7θ)

=
1

R9

∑
tan2(4θ) tan(7θ)

= −
(

1√
3

)∑
tan2(4θ) tan(7θ)

= −
(

1√
3

)
W9(2, 1)

= 15.

By Theorem 1.7,

q2 +
4p3

27
=

(∑ α

β
−
∑ β

α

)2

= 242.

t =
1
3
√
2

3

√
−q +

√
q2 +

4p3

27
+

1
3
√
2

3

√
−q −

√
q2 +

4p3

27

=
1
3
√
2

3
√
−q + 24 +

1
3
√
2

3
√
−q − 24

=
1
3
√
2

3

√
42− 6(3

3
√
3− 3
√
9) +

1
3
√
2

3

√
−6− 6(3

3
√
3− 3
√
9)

=
3

√
21− 3(3

3
√
3− 3
√
9) +

3

√
−3− 3(3

3
√
3− 3
√
9)

=
3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9)

By Theorem 1.5,∑
3
√
α = 3
√
a+ 6 + 3t

=
3

√
(−3 3
√
3) + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9))

=
3

√
−3 3
√
3 + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9))

and ∑ 1
3
√
α

=
3
√
b+ 6 + 3t

=
3

√
(− 3
√
9) + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9))

=
3

√
− 3
√
9) + 6 + 3(

3

√
21− 3(3

3
√
3− 3
√
9)− 3

√
3 + 3(3

3
√
3 +

3
√
9)).

This implies Equations (5) and (6) in Theorem 1.2.
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6 Proof of Theorem 1.3

To further illustrate out method, in this section, we will prove Theorem 1.3, which is similar to
the proof of Theorem 1.1.

Proof. Let

α = − 2
6
√
7
sin(2δ), β = − 2

6
√
7
sin(4δ), γ = − 2

6
√
7
sin(8δ).

∑
α =

(
− 2

6
√
7

)
(sin(2δ) + sin(4δ) + sin(8δ))

=

(
− 2

6
√
7

)(√
7

2

)
= − 3
√
7.

∑
αβ =

(
4
3
√
7

)
(sin(2δ) sin(4δ) + sin(4δ) sin(4δ) + sin(8δ)) sin(4δ))

= 0.

αβγ =

(
− 8√

7

)
(sin(2δ) sin(4δ) sin(8δ))

= 1.

It follows that {α, β, γ} are roots of the equation:

x3 +
3
√
7x2 − 1 = 0. (29)

The associated Ramanujan equation is equal to

t3 + pt+ q = 0, (30)

where

p = 3(
3
√
7− 3),

q = 6
3
√
7− 9.

We now compute
∑α

β
and

∑β

α
.

u =
∑ α

β

=
∑ sin(2δ)

sin(4δ)

=
∑ sin(2δ)

2 sin(2δ) cos(2δ)

=
1

2

∑ cos(2δ) cos(4δ)

cos(2δ) cos(4δ) cos(8δ)
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=
1

2Q7

∑
cos(2δ) cos(4δ)

= 4
∑

cos(2δ) cos(4δ)

= −2.

v =
∑ β

α

=
∑ sin(4δ)

sin(2δ)

=
∑ 2 sin(2δ) cos(2δ)

sin(2δ)

= 2
∑

cos(2δ)

= −1.

By Theorem 1.7,

q2 +
4p3

27
=

(∑ α

β
−
∑ β

α

)2

= 1.

By Theorem 1.6, a real solution for the associated Ramanujan equation is given by

t =
1
3
√
2

3

√
−q +

√
q2 +

4p3

27
+

1
3
√
2

3

√
−q −

√
q2 +

4p3

27

=
1
3
√
2

3

√
−q +

√
1 +

1
3
√
2

3

√
−q −

√
1

=
1
3
√
2

3

√
10− 6

3
√
7 +

1
3
√
2

3

√
8− 6

3
√
7

=
3

√
5− 3

3
√
7 +

3

√
4− 3

3
√
7.

By Theorem 1.5,∑
3
√
α = 3
√
a+ 6 + 3t

= 3

√
− 3
√
7 + 6 + 3

(
3

√
5− 3

3
√
7 +

3

√
4− 3

3
√
7

)

=
3

√
− 3
√
7 + 6 + 3

3

√
5− 3

3
√
7 + 3

3

√
4− 3

3
√
7

and ∑ 1
3
√
α

=
3
√
b+ 6 + 3t

=
3

√
6 + 3

3

√
5− 3

3
√
7 + 3

3

√
4− 3

3
√
7

This implies Equations (7) and (8) in Theorem 1.3.
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7 Proof of Theorem 1.4

To further illustrate out method, in this section, we will prove Theorem 1.4, which is similar to
the proof of Theorem 1.2.

Proof. ∑
α =

(
− 1

6
√
7

)
(tan(2δ) + tan(4δ) + tan(8δ))

=

(
− 1

6
√
7

)(
−
√
7
)

=
3
√
7.∑

αβ =

(
1
3
√
7

)
(tan(2δ) tan(4δ) + tan(4δ) tan(4δ) + tan(8δ)) tan(4δ))

=

(
1
3
√
7

)
(−7)

= − 3
√
49.

αβγ =

(
− 1√

7

)
(tan(2δ) tan(4δ) tan(8δ))

= 1.

It follows that {α, β, γ} are roots of the equation:

x3 − 3
√
7x2 − 3

√
49x− 1 = 0. (31)

The associated Ramanujan equation is equal to

t3 + pt+ q = 0, (32)

where

p = −(3 3
√
7− 3

3
√
49 + 9),

q = (6
3
√
7− 6

3
√
49 + 2).

We now compute
∑ α

β
and

∑ β

α
.

u =
∑ α

β

=
∑ tan(2δ)

tan(4δ)

=
∑ tan2(2δ) tan(8δ)

tan(2δ) tan(4δ) tan(8δ)

=

(
− 1√

7

)∑
tan2(2δ) tan(8δ)

=

(
− 1√

7

)∑
tan2(4δ) tan(2δ)

172



=

(
− 1√

7

)
W7(1, 2)

=

(
− 1√

7

)(
9
√
7
)

= −9.

v =
∑ β

α

=
∑ tan(4δ)

tan(2δ)

=
∑ tan2(4δ) tan(8δ)

tan(2δ) tan(4δ) tan(8δ)

=

(
− 1√

7

)∑
tan2(4δ) tan(8δ)

=

(
− 1√

7

)∑
tan2(2δ) tan(4δ)

=

(
− 1√

7

)
W7(2, 1)

=

(
− 1√

7

)(√
7
)

= −1.

By Theorem 1.7,

q2 +
4p3

27
=

(∑ α

β
−
∑ β

α

)2

= 64.

t =
1
3
√
2

3

√
−q +

√
q2 +

4p3

27
+

1
3
√
2

3

√
−q −

√
q2 +

4p3

27

=
1
3
√
2

3
√
−q + 8 +

1
3
√
2

3
√
−q − 8

=
1
3
√
2

3

√
(6

3
√
7− 6

3
√
49 + 2) + 8 +

1
3
√
2

3

√
(6

3
√
7− 6

3
√
49 + 2)− 8

=
3

√
(3

3
√
7− 3

3
√
49 + 1) + 4 +

3

√
(3

3
√
7− 3

3
√
49 + 1)− 4

=
3

√
3

3
√
7− 3

3
√
49 + 5 +

3

√
3

3
√
7− 3

3
√
49− 3.

By Theorem 1.5,∑
3
√
α = 3
√
a+ 6 + 3t

= 3

√
3
√
7 + 6 + 3

(
3

√
3

3
√
7− 3

3
√
49 + 5 +

3

√
3

3
√
7− 3

3
√
49− 3

)
and ∑ 1

3
√
α

=
3
√
b+ 6 + 3t
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= 3

√
− 3
√
49 + 6 + 3

(
3

√
3

3
√
7− 3

3
√
49 + 5 +

3

√
3

3
√
7− 3

3
√
49− 3

)
.

This implies Equations (9) and (10) in Theorem 1.4.

8 Remarks

In a future paper, we will use the methods developed in this paper to compute Ramanujan type
identities when the roots are the following forms:

km−n tfn
m
1

tfnn2
, km−n tfn

m
2

tfnn3
, km−n tfn

m
3

tfnn1
,

where tfn1, tfn2, tfn3 are trigonometric values.
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