A generalized computation procedure for Ramanujan-type identities and cubic Shevelev sum

Peter J.-S. Shiue, Anthony G. Shannon, Shen C. Huang, Jorge E. Reyes
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 1, Pages 98–129
DOI: 10.7546/nntdm.2023.29.1.98-129
Full paper (PDF, 388 Kb)

Details

Authors and affiliations

Peter J.-S. Shiue
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America

Anthony G. Shannon
Warrane College, University of New South Wales
Kensington, NSW 2033, Australia

Shen C. Huang
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America

Jorge E. Reyes
Department of Mathematical Sciences, University of Nevada, Las Vegas
Las Vegas, NV, 89154, United States of America

Abstract

A generalized Computation procedure for construction of the Ramanujan-type from a given general cubic equation and a cosine Ramanujan-type identity is developed from detailed analyses of the properties of Ramanujan-type cubic equations. Examples are provided together with cubic Shevelev sums.

Keywords

  • Ramanujan cubic polynomials
  • Ramanujan cubic polynomials of the second kind
  • Cubic Shevelev sum

2020 Mathematics Subject Classification

  • 11C08
  • 11D25
  • 11Y99

References

  1. Boyer, C. B., & Merzbach, U. C. (2011). A History of Mathematics. John Wiley & Sons.
  2. Chen, W. Y. C. (2022). Cubic equations through the looking glass of Sylvester. The College Mathematics Journal, 53(5), 396–398.
  3. De Pillis, L. G. (1998). Newton’s cubic roots. Gazette of the Australian Mathematical Society, 25(5), 236–241.
  4. Dresden, G., Panthi, P., Shrestha, A., & Zhang, J. (2019). Cubic polynomials, linear shifts, and Ramanujan simple cubics. Mathematics Magazine, 92(5), 374–381.
  5. Gilbert, L., & Gilbert, J. (2014). Elements of Modern Algebra (8th ed.). Cengage Learning.
  6. Hillman, A. P., & Alexanderson, G. L. (1988). A First Undergraduate Course in Abstract Algebra. Brooks/Cole.
  7. Liao, H.-C., Saul, M., & Shiue, P. J.-S. (in press). Revisiting the general cubic: A
    simplification of Cardano’s solution. The Mathematical Gazette.
  8. McLeish, J. (1994). The Story of Numbers. Ballantine Books.
  9. Ramanujan, S. (1957). Notebooks of Srinivasa Ramanujan (2 volumes). Tata Institute of Fundamental Research, Bombay.
  10. Shannon, A. G. (1974). The Jacobi–Perron algorithm and Bernoulli’s iteration. The Mathematics Student, 42, 52–56.
  11. Shevelev, V. (2007). On Ramanujan cubic polynomials. South East Asian Mathematics and Mathematical Sciences, 8, 113–122.
  12. Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2022). Notes on efficient computation of Ramanujan cubic equations. Notes on Number Theory and Discrete Mathematics, 28(2), 350–375.
  13. Van der Poorten, A. (1996). Notes on Fermat’s last theorem. Computers & Mathematics with Applications, 31(11), 139–139.
  14. Wang, K. (2021). On Ramanujan type identities and Cardano formula. Notes on Number Theory and Discrete Mathematics, 27(3), 155–174.
  15. Wituła, R. (2010). Full description of Ramanujan cubic polynomials. Journal of Integer Sequences, 13, Article 10.5.7.
  16. Wituła, R. (2010). Ramanujan cubic polynomials of the second kind. Journal of Integer Sequences, 13, Article 10.7.5.
  17. Wituła, R. (2012). Ramanujan type trigonometric formulae. Demonstratio Mathematica, 45(4), 779–796.

Manuscript history

  • Received: 25 December 2022
  • Revised: 28 February 2023
  • Accepted: 2 March 2023
  • Online First: 6 March 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Shiue, P. J.-S., Shannon, A. G., Huang, S. C., & Reyes, J. E. (2023). A generalized computation procedure for Ramanujan-type identities and cubic Shevelev sum. Notes on Number Theory and Discrete Mathematics, 29(1), 98-129, DOI: 10.7546/nntdm.2023.29.1.98-129.

Comments are closed.