Note on some sequences having periods that divide (pp − 1) / (p − 1)

Abdelkader Benyattou and Miloud Mihoubi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 2, Pages 234–239
DOI: 10.7546/nntdm.2022.28.2.234-239
Full paper (PDF, 185 Kb)

Details

Authors and affiliations

Abdelkader Benyattou
Department of Mathematics and Informatics, Zian Achour University of Djelfa, Algeria
RECITS Laboratory, P. O. 32 Box 32, El Alia 16111, Algiers, Algeria

Miloud Mihoubi
Faculty of Mathematics, USTHB
RECITS Laboratory, P. O. 32 Box 32, El Alia 16111, Algiers, Algeria

Abstract

In this paper, we use the properties of the classical umbral calculus to determine sequences related to the Bell numbers and having periods divide \left(p^{\,p}-1\right) / \left(p-1\right).

Keywords

  • Classical umbral calculus
  • Congruences
  • Bell numbers

2020 Mathematics Subject Classification

  • 05A40
  • 11A07
  • 11B73

References

  1. Benyattou, A. (2020). Derangement polynomials with a complex variable. Notes on Number Theory and Discrete Mathematics, 26(4), 128–135.
  2. Benyattou, A., & Mihoubi, M. (2018). Congruences related to the Bell polynomials. Quaestiones Mathematicae, 41(3), 437–448.
  3. Benyattou, A., & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra. Notes on Number Theory and Discrete Mathematics, 25(2), 136–144.
  4. Car, M., Gallardo, L. H., Rahavandrainy, O., & Vaserstein, L. N. (2008). About the period of Bell numbers modulo a prime. Bulletin of the Korean Mathematical Society, 45(1), 143–155.
  5. Gallardo, L. H. (2016). A property of the period of a Bell number modulo a prime number. Applied Mathematics E-Notes, 16, 72–79.
  6. Gertsch, A., & Robert, A. M. (1996). Some congruences concerning the Bell numbers. The Bulletin of the Belgian Mathematical Society – Simon Stevin, 3, 467–475.
  7. Gessel, I. M. (2003). Applications of the classical umbral calculus. Algebra Universalis, 49, 397–434.
  8. Maamra, M. S., & Mihoubi, M. (2014). The (r1, …, rp)-Bell polynomials. Integers, Article A34.
  9. Mező, I. (2011). The r-Bell numbers. Journal of Integer Sequences, (14), Article 11.1.1.
  10. Mező, I., & Ramírez, J. L. (2017). Divisibility properties of the r-Bell numbers and polynomials. Journal of Number Theory, 177, 136–152.
  11. Montgomery, P. L., Nahm, J. R., & Wagstaff, S. (2010). The period of the Bell numbers modulo a prime. Mathematics of Computation, 79, 1793–1800.
  12. Radoux, C. (1975). Nombres de Bell modulo p premier et extensions de degré p de Fp. Comptes Rendus de l’Academie des Sciences – Series A, 281, 879–882.
  13. Roman, S., & Rota, G. C. (1978). The umbral calculus. Advances in Mathematics, 27, 95–188.
  14. Rota, G. C. (1964). The Number of Partitions of a Set. The American Mathematical Monthly, 71(5), 498–504.
  15. Rota, G. C., & Taylor, B. D. (1994). The classical umbral calculus. SIAM Journal on Mathematical Analysis, 25, 694–711.
  16. Sun, Y., & Wu, X. (2011). The largest singletons of set partitions. European Journal of Combinatorics, 32, 369–382.
  17. Williams, G. T. (1945). Numbers generated by the function exp(ex − 1). The American Mathematical Monthly, 52, 323–327.

Manuscript history

  • Received: 7 June 2021
  • Revised: 9 March 2022
  • Accepted: 15 April 2022
  • Online First: 19 April 2022

Related papers

Cite this paper

Benyattou, A., & Mihoubi, M. (2022). Note on some sequences having periods that divide (pp − 1) / (p − 1). Notes on Number Theory and Discrete Mathematics, 28(2), 234-239, DOI: 10.7546/nntdm.2022.28.2.234-239.

Comments are closed.