Abdelkader Benyattou and Miloud Mihoubi

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 2, Pages 136-144

DOI: 10.7546/nntdm.2019.25.2.136-144

**Full paper (PDF, 196 Kb)**

## Details

### Authors and affiliations

Abdelkader Benyattou

*Faculty of Mathematics, USTHB, RECITS Laboratory
P. O. 32 Box 32, El Alia 16111, Algiers, Algeria
*

Miloud Mihoubi

*Faculty of Mathematics, USTHB, RECITS Laboratory
P. O. 32 Box 32, El Alia 16111, Algiers, Algeria
*

### Abstract

In this paper, by the generalized Bell umbra and Rolle’s theorem, we give some results on the real rootedness of polynomials. Some applications on partition polynomials are considered. Our results are illustrated by some comprehensive examples.

### Keywords

- Polynomials with real zeros
- Generalized Bell umbra
- Partition polynomials

### 2010 Mathematics Subject Classification

- 11B73
- 30C15

### References

- Ahuja, J. C. & Enneking, E. A. (1979). Concavity property and a recurrence relation for associated Lah numbers, The Fibonacci Quarterly, 17, 158–161.
- Bell, E. T. (1934). Exponential polynomials, Ann. Math., 35, 258–277.
- Bender, E. A. & Canfield, E. R. (1996). Log-concavity and related properties of the cycle index polynomials, J. Combin. Theory Ser. A, 74, 57–70.
- Benyattou, A. & Mihoubi, M. (2018). Curious congruences related to the Bell polynomials, Quaest. Math., 41 (3), 437–448.
- Bóna, M., & Mez˝ o, I. (2016). Real zeros and partitions without singleton blocks, European J. Combin., 51, 500–510.
- Brenti, F. (1994). Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., 178, 71–89.
- Comtet, L. (1974). Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht-Holland, Boston-USA, 133–175.
- Dong, F. M., Koh, K. M. & Teo, K. L. (2005). Chromatic polynomials and chromaticity of graphs, World Scientific, British library.
- Gertsch, A. & Robert, A. M. (1996). Some congruences concerning the Bell numbers, Bull. Belg. Math. Soc. Simon Stevin, 3, 467–475.
- Gessel, I.M. (2003). Applications of the classical umbral calculus, Algebra Universalis, 49, 397–434.
- Mező, I. (2008). On the maximum of r-Stirling numbers, Adv. Appl. Math., 41, 293–306.
- Maamra, M. S. & Mihoubi, M. (2014). The (
*r*_{1},…,*r*)-Bell polynomials, Integers, 14, Article A34._{p} - Mihoubi, M. (2008). Bell polynomials and binomial type sequences, Discrete Math., 308, 2450–2459.
- Mihoubi, M. (2013). The role of binomial type sequences in determination identities for Bell polynomials, Ars Combin., 111, 323–337.
- Mihoubi, M. &Maamra, M.S. (2012).The (
*r*_{1},…,*r*)-Stirling numbers ofthe second kind, Integers, 12, Article A35._{p} - Mihoubi, M. & Rahmani, M. (2017). The partial
*r*-Bell polynomials, Afr. Mat., 28 (7–8), 1167–1183. - Shattuck, M. (2017). Some combinatorial formulas for the partial
*r*-Bell polynomials, Notes Number Th. Discr. Math., 23 (1), 63–76. - Stanley, R. P. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci., 576, 500–534.
- Sun, Y. , Wu, X. & Zhuang, J. (2013). Congruences on the Bell polynomials and the derangement polynomials, J. Num. Theory, 133, 1564–1571.
- Tebtoub, A.F. (2017). Aspects combinatoires liés à la monotonie des suites classiques, Doctorat thesis, USTHB, 2017.

## Related papers

- Benyattou, A., & Mihoubi, M. (2022). Note on some sequences having periods that divide (
*p*− 1) / (^{p}*p*− 1).*Notes on Number Theory and Discrete Mathematics*, 28(2), 234-239. - Benyattou, A. (2022). Congruences via umbral calculus.
*Notes on Number Theory and Discrete Mathematics*, 28(4), 719-729.

## Cite this paper

Benyattou, A. & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra. *Notes on Number Theory and Discrete Mathematics*, 25(2), 136-144, DOI: 10.7546/nntdm.2019.25.2.136-144.