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1 Introduction

The real rootedness of polynomials has attracted researchers great interest. One of the reasons is
that any polynomial of real zeros implies the log-concavity and the unimodality of its coefficients,
which appear in various fields of mathematics, see [6, 18]. In this paper, we investigate the
properties of the generalized Bell umbra and Rolle’s theorem to give a result on the polynomials
of real zeros. Partial and auxiliary results on the σ-polynomials of graphs and on a class of
polynomials linked to the partial r-Bell polynomials are considered.
To use later, recall that the n-th Bell polynomial Bn (x) and the n-th r-Bell polynomial Bn,r (x)
can be defined by Dobinski’s formula

Bn (x) = e−x
∑
j≥0

jn
xj

j!
, Bn,r (x) = e−x

∑
j≥0

(j + r)n
xj

j!
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and Bn
x = Bn (x) be the generalized Bell umbra introduced by Sun et al. [19]. It is known that,

for any polynomial f and any integer n ≥ 0, the generalized Bell umbra satisfies [19]

(Bx)n f (Bx) = xnf (Bx + n) ,

where (x)n = x (x− 1) · · · (x− n+ 1) if n ≥ 1 and (x)0 = 1. In particular, we have

Bn+1
x = x (Bx + 1)n and (Bx)n = xn.

Some polynomials have closed forms in terms of Bx such the polynomials [4]

Bn,r (x) = (Bx + r)n = x−r (Bx)r B
n
x, Ln (x) = (Bx + n− 1)n ,

and for r1 ≤ · · · ≤ rp be non-negative integers, we also have [4, 12]:

Bn;r1,...,rp (x) = (Bx + rp)rp · · · (Bx + rp)r1 (Bx + rp)
n = x−rp (Bx)rp · · · (Bx)r1 B

n
x,

where Bn;r1,...,rp (x) are the (r1, . . . , rp)-Bell polynomials [12] and Ln (x) are the Lah polynomi-
als. More generally, for any polynomial f, there holds

e−x
∑
k≥0

f (k)
xk

k!
= f (Bx) .

For further information about umbral calculus on Bell polynomials, one can also see [4, 9, 10].
The paper is organized as follows. In the next section we give a result on polynomials with real
zeros. In the last section we present applications on a class of polynomials linked to the partial
r-Bell polynomials [16].

2 Real-rooted polynomials via generalized Bell umbra

Let RZ be the set of the real polynomials having only real zeros.
The principal main result of this paper is given by the following theorem.

Theorem 1. Let f be a polynomial with real coefficients such that f (Bx) ∈ RZ. Then, for any
non-negative integer r, there holds

(Bx)r f (Bx) ∈ RZ.

Furthermore, for any non-negative integers r1, . . . , rp, there holds

(Bx)rp · · · (Bx)r1 f (Bx) ∈ RZ.

Proof. From the identity f (Bx) = e−x
∑

k≥0 f (k)
xk

k!
[4] it follows

d

dx
(exf (Bx + r − 1)) =

d

dx

(∑
k≥0

f (k + r − 1)
xk

k!

)
=
∑
k≥0

f (k + r)
xk

k!
= exf (Bx + r) .

The proof can be obtained by induction on r and by application of Rolle’s theorem on the function
exf (Bx + r − 1) . More generally, since g (x) := (Bx)r1 f (Bx) ∈ RZ, then the polynomial
(Bx)r2 g (Bx) = (Bx)r2 (Bx)r1 f (Bx) has only real zeros, and so on.
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Example 1. For f (x) = xn we get f (Bx) = Bn (x) ∈ RZ. We deduce from Theorem 1 the
known result [11, Th. 6]

(Bx)r B
n
x = xrBn;r (x) ∈ RZ

and the known result [12] (see also [4, 15])

(Bx)rp · · · (Bx)r1 B
n
x = xmax{r1,...,rp}Bn;r1,...,rp (x) ∈ RZ.

Example 2. For f (x) = (x)n we get f (Bx) = xn ∈ RZ. It follows from Theorem 1 that the
polynomial

(Bx)r f (Bx) = xr (Bx + r)n = xr
min(n,r)∑

k=0

(
n

k

)
r!

(r − k)!
xn−k

is in RZ. More generally, the polynomial

(Bx)rp · · · (Bx)r1 (Bx)n = xmax{r1,...,rp,n}B0;r1,...,rp,n (x)

is in RZ.

Example 3. For f (x) = (x+ n− 1)n we get f (Bx) = (Bx + n− 1)n = Ln (x) ∈ RZ [1]. It
follows from Theorem 1 that the polynomial

(Bx)rp · · · (Bx)r1 (Bx + n− 1)n =
n∑

k=0

(
n

k

)
(n− 1)n−k (Bx)rp · · · (Bx)r1 (Bx)k

=
n∑

k=0

L(n, k)xmax{k,r1,...,rp}B0;k,r1,...,rp (x)

is in RZ, where L(n, k) are the Lah numbers.

To give an application on the σ-polynomial associated to a graph, let λ be a positive integer
and recall that a λ-coloring of a simple graph G is a mapping f : V → {1, 2, . . . , λ} where
f(u) 6= f(v) whenever the vertices u and v are adjacent in G. Two λ-colorings f and g of G are
distinct if f(x) 6= g(x) for some vertex x in G, and, the number of λ-colorings of G is called the
chromatic polynomial P (G, λ). The chromatic polynomial can be defined as

f (λ) =
n∑

k=0

αk (G) (λ)k ,

where αk (G) is the number of ways of partitioning V into k nonempty sets. The σ-polynomial
associated to G is

n∑
k=0

αk (G)x
k =

n∑
k=0

αk (G) (Bx)k = f (Bx) .

For more information about chromatic polynomials, see [8].

Corollary 2. If the σ-polynomial f (Bx) of a graph G is in RZ, then the σ-polynomial

(Bx)r1 · · · (Bx)rp f (Bx)

of the graph G ∪Kr1 ∪ · · · ∪Krp is in RZ, where Kr is the complete graph of r vertices.
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Example 4. A tree Tn of n (≥ 1) vertices has chromatic polynomial f (λ) = λ (λ− 1)n−1 . By
the identity (Bx)n f (Bx) = xnf (Bx + n) , the σ-polynomial of Tn must be

f (Bx) = Bx (Bx − 1)n−1 = xBn−1
x = xBn−1 (x)

which is in RZ. Then, the σ-polynomial of the graph Tn ∪Kr is in RZ, and is to be

(Bx)r f (Bx) = xr (Bx + r) (Bx + r − 1)n−1 = xr [xBn−1,r (x) + rBn−1,r−1 (x)] .

2.1 Polynomials linked to the partial r-Bell polynomials

We present in this section some applications of Theorem 1 on a class of polynomials linked to the
partial r-Bell polynomials. Indeed, recall that the (n, k)-th partial r-Bell polynomial

B
(r)
n+r,k+r (a;b) := B

(r)
n+r,k+r (a1, a2, . . . ; b1, b2, . . .)

introduced by Mihoubi et al. [16] (see also [17]) can be defined by

∑
n≥k

B
(r)
n+r,k+r (a;b)

tn

n!
=

1

k!

(∑
j≥1

aj
tj

j!

)k(∑
j≥0

bj+1
tj

j!

)r

.

This polynomial presents an extension of the (n, k)-th partial Bell polynomial

Bn,k (a1, a2, . . .) := Bn,k (a)

introduced by Bell [2] and studied later by several authors, see for example [7, 13, 14]).
Let (an) and (bn) be two the sequences of real numbers linked as follows

ϕ (t) =
∑
n≥1

an
tn

n!
, 1 + ϕ (t) =

∑
n≥0

bn+1
tn

n!
,

Here b = e + La, where e =(1, 0, 0, . . .) , a =(a1, a2, . . .) , and the sequence (Lna) is defined
by L0a =(a1, a2, . . .) , La =(0, a1, a2, . . .) , L

2a =(0, 0, a1, a2, . . .) and so on.

Proposition 3. Let r be a non-negative integer and let Vn,r (x) and Vn (x) be the polynomials
defined by

Vn,r (x) =
n∑

k=0

B
(r)
n+r,k+r (a; e+ La)xk, Vn (x) = Vn,0 (x) =

n∑
k=0

Bn,k (a)x
k.

If Vn (x) ∈ RZ, then Vn,r (x) ∈ RZ.

Proof. From [16, Th. 4] we have∑
n≥0

B
(r)
n+r,k+r (a; e+ La)

tn

n!
=

1

k!
(ϕ (t))k (1 + ϕ (t))r ,

∑
n≥0

Vn,r (x)
tn

n!
= (1 + ϕ (t))r exp (xϕ (t)) .
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Then, for fn (x) :=
n∑

k=0

Bn,k (a) (x)k we get fn (Bx + r) = Vn,r (x) . Indeed, we have

∑
n≥0

fn (Bx + r)
tn

n!
=
∑
k≥0

(Bx + r)k
∑
n≥k

Bn,k (a)
tn

n!

=
∑
k≥0

(
Bx + r

k

)
(ϕ (t))k

= (1 + ϕ (t))Bx+r

= (1 + ϕ (t))r
∑
n≥0

fn (Bx)
tn

n!

= (1 + ϕ (t))r exp (xϕ (t)) ,

which is the exponential generating function of the sequence (Vn,r (x)) .
Hence, the application of Theorem 1 completes the proof.

Corollary 4. For a =(1, 1, 1, . . .) , the following polynomials are in RZ

Vn,r (x) =
n∑

k=0

B
(r)
n+r,k+r

(
La; e+ L2a

)
xk, Un,r (x) =

n∑
k=0

B
(r)
n+r,k+r

(
L2a; e+ L3a

)
xk

Proof. The 2-associated and 3-associated Bell polynomials

Vn (x) =
n∑

k=0

{
n

k

}(2)

xk =
n∑

k=0

Bn,k (La)x
k, Un (x) =

n∑
k=0

{
n

k

}(3)

xk =
n∑

k=0

Bn,k

(
L2a

)
xk

are in RZ, where∑
n≥k

{
n

k

}(2)
tn

n!
=

1

k!

(
et − 1− t

)k
,
∑
n≥k

{
n

k

}(3)
tn

n!
=

1

k!

(
et − 1− t− t2

2

)k

,

see [5, 20]. So, the corollary follows from Proposition 3.

The potential polynomials used by Bender and Canfield [3, Th. 1] to study the log-concavity
and log-convexity of their coefficients are used here to define sequences of polynomials by the
generalized Bell umbra for which we deduce an easy application of Theorem 1.

Lemma 5. Let (An (x)) be a sequence of polynomials defined by

1 +
∑
n≥1

An (x)
tn

n!
= exp (xh (t)) , h (t) =

∑
j≥1

aj
tj

j!
,

and let
(
A

(s)
n (x)

)
be a sequence of polynomials defined by

A(0)
n (x) = An (x) , A

(s)
n (x) = A(s−1)

n (Bx) , s ≥ 1.

Then

1 +
∑
n≥1

A(s)
n (x)

tn

n!
= exp

(
x
∑
j≥1

A
(s−1)
j (1)

tj

j!

)
, s ≥ 1.
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Proof. We proceed by induction on s ≥ 1. Since∑
n≥0

A(1)
n (x)

tn

n!
=
∑
n≥0

A(0)
n (Bx)

tn

n!

= exp (Bxh (t))

=
∑
n≥0

Bn (x)
n!

(h (t))n

= exp (x (exp (h (t))− 1))

= exp

(
x
∑
n≥1

A(0)
n (1)

tn

n!

)

it follows that the desired identity is true for s = 1. Assume it is true for s, s ≥ 1. Then∑
n≥0

A(s+1)
n (x)

tn

n!
=
∑
n≥0

A(s)
n (Bx)

tn

n!

= exp

(
Bx

∑
j≥1

A
(s−1)
j (1)

tj

j!

)

=
∑
n≥0

Bn (x)
n!

(∑
j≥1

A
(s−1)
j (1)

tj

j!

)n

= exp

(
x

(
exp

(∑
j≥1

A
(s−1)
j (1)

tj

j!

)
− 1

))

= exp

(
x
∑
n≥1

A(s)
n (1)

tn

n!

)

which proves the induction step.

Lemma 5 and Proposition 3 state that we have:

Corollary 6. Let r, s be non-negative integers, as=
(
A

(s)
1 (1) , A

(s)
2 (1) , . . .

)
and let V(s)

n,r (x) and

V(s)
n (x) be the polynomials defined by

V(s)
n,r (x) =

n∑
k=0

B
(r)
n+r,k+r (as; e+ Las)x

k, V(s)
n (x) = V(s)

n,0 (x) =
n∑

k=0

Bn,k (as)x
k.

If V(s)
n (x) ∈ RZ, then V(s)

n,r (x) ∈ RZ.

Example 5. For an = (n− 1)!, n ≥ 1, we get h (t) = − ln (1− t) . Then, under the notations of
Lemma 5 and Corollary 6, we obtain

A(0)
n (x) = x (x+ 1) · · · (x+ n− 1) ,

a0 =
(
A

(0)
1 (1) , A

(0)
2 (1) , . . .

)
=(1!, 2!, . . .)

141



and

V(0)
n,0 (x) =

n∑
k=0

Bn,k (a0)x
k =

n∑
k=0

L (n, k)xk = Ln (x)

which is in RZ, then the polynomial

V(0)
n,r (x) =

n∑
k=0

B
(r)
n+r,k+r (a0; e+ La0)x

k =
n∑

k=0

n!

k!

(
n+ r − 1

k + r − 1

)
xk, r ≥ 1,

is also in RZ.

A further result on exponential polynomials with real roots is given by the following proposi-
tion.

Proposition 7. Let r be a non-negative integer and
(
f
(r)
n (x)

)
be the sequence defined by

∑
n≥0

f (r)
n (x)

tn

n!
= F (t) (h (t))r exp (xh (t)) , h (t) =

∑
j≥1

aj
tj

j!
,

for some power series F. Then, for r ≤ n − 1, if the polynomial f (0)
n (x) is of degree n and is in

RZ, then

f (r)
n (x) = r!

n∑
k=r

(
n

k

)
Bk,r (a) f

(0)
n−k (x) ∈ RZ.

Proof. By definition of the sequence
(
f
(r)
n (x)

)
it follows that f (r)

n (x) = d
dx
f
(r−1)
n (x) . This

shows that the polynomial f (r)
n (x) is of degree n− r. The proof can be deduced by induction on

r and by application of Rolle’s theorem.

Example 6. Let
(
f
(r)
n (x)

)
be the sequence defined by∑

n≥0

f (r)
n (x)

tn

n!
=
(
et − 1

)r
exp

(
x
(
et − 1

))
.

Then, the polynomial f (r)
n (x) = r!

n∑
k=r

(
n
k

){
k
r

}
Bn−k (x) is in RZ, where

{
k
r

}
are the Stirling num-

bers of the second kind.

Example 7. Let
(
f
(r)
n (x)

)
be the sequence defined by∑

n≥0

f (r)
n (x)

tn

n!
= (ln (1 + t))r exp (x (ln (1 + t))) .

Then, the polynomial f (r)
n (x) = r!

n∑
k=r

(−1)k−r
(
n
k

)[
k
r

]
(x)n−k is in RZ.

Example 8. Let
(
f
(r)
n (x)

)
be the sequence defined by

∑
n≥0

f (r)
n (x)

tn

n!
=

1

r!

(
t

1− t

)r

exp

(
xt

1− t

)
.

Then, the polynomial f (r)
n (x) = r!

n∑
k=r

(−1)k−r
(
n
k

)
L(k, r)Ln−k (x) is in RZ.
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