Abdelkader Benyattou

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 28, 2022, Number 4, Pages 719–729

DOI: 10.7546/nntdm.2022.28.4.719-729

**Download PDF (193 Kb)**

## Details

### Authors and affiliations

Abdelkader Benyattou

*Department of Mathematics and Informatics, Ziane Achour University of Djelfa, Algeria
RECITS Laboratory, P.O.Box 32, El Alia 16111, Algiers, Algeria*

### Abstract

In this paper, we use the properties of the classical umbral calculus to give some congruences related to the Bell numbers and Bell polynomials. We also present a new congruence involving Appell polynomials with integer coefficients.

### Keywords

- Bell polynomials
- Appell polynomials
- Congruences
- Umbral calculus

### 2020 Mathematics Subject Classification

- 11B83
- 11B73
- 11A07
- 05A40

### References

- Appell, P. (1880). Sur une classe de polynômes.
*Annales Scientifiques de l’École Normale Supérieure*, 9, 119–144. - Broder, A. Z. (1984). The
*r*-Stirling numbers.*Discrete Mathematics*, 49(3), 241–259. - Benyattou, A., & Mihoubi, M. (2018). Curious congruences related to the Bell polynomials.
*Quaestiones Mathematicae*, 41(3), 437–448. - Benyattou, A., & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra.
*Notes on Number Theory and Discrete Mathematics*, 25(2), 136–144. - Gertsch, A., & Robert, A. M. (1996). Some congruences concerning the Bell numbers.
*Bulletin of the Belgian Mathematical Society – Simon Stevin*, 3, 467–475. - Gessel, I. M. (2003). Applications of the classical umbral calculus.
*Algebra Universalis*, 49(4), 397–434. - Gould, H. W. (1972).
*Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations*. Morgantown, W. V. - Mihoubi, M., & Taharbouchet, S. (2020). Some identities involving Appell polynomials.
*Quaestiones Mathematicae*, 43(2), 203–212. - Mező, I. (2011). The
*r*-Bell numbers.*Journal of Integer Sequences*, 14, Article 11.1.1. - Nyul, G., & Rácz, G. (2015). The
*r*-Lah numbers.*Discrete Mathematics*, 338(10), 1660–1666. - Rota, G. C. (1964). The number of partitions of a set.
*American Mathematical Monthly*, 71(5), 498–504. - Roman, S., & Rota, G. C. (1978). The umbral calculus.
*Advances in Mathematics*, 27(2), 95–188. - Rota, G. C., & Taylor, B. D. (1994). The classical umbral calculus. SIAM
*Journal on Mathematical Analysis*, 25(2), 694–711. - Sun, Y., Wu, X., & Zhuang, J. (2013). Congruences on the Bell polynomials and the derangement polynomials.
*Journal of Number Theory*, 133(5), 1564–1571. - Sun, Z-W., & Zagier, D. (2011). On a curious property of Bell numbers.
*Bulletin of the Australian Mathematical Society*, 84(1), 153–158. - Sun, Y., & Wu, X. (2011). The largest singletons of set partitions.
*European Journal of Combinatorics*, 32(3), 369–382. - Touchard, J. (1933). Propriétés arithmétiques de certains nombres récurrents. Annales de la Société scientifique de Bruxelles, A53, 21–31.

### Manuscript history

- Received: 16 February 2022
- Revised: 2 November 2022
- Accepted: 5 November 2022
- Online First: 7 November 2022

## Related papers

- Benyattou, A., & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra.
*Notes on Number Theory and Discrete Mathematics*, 25(2), 136–144.

## Cite this paper

Benyattou, A. (2022). Congruences via umbral calculus. *Notes on Number Theory and Discrete Mathematics*, 28(4), 719-729, DOI: 10.7546/nntdm.2022.28.4.719-729.