Congruences via umbral calculus

Abdelkader Benyattou
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 719–729
DOI: 10.7546/nntdm.2022.28.4.719-729
Download PDF (193 Kb)

Details

Authors and affiliations

Abdelkader Benyattou
Department of Mathematics and Informatics, Ziane Achour University of Djelfa, Algeria
RECITS Laboratory, P.O.Box 32, El Alia 16111, Algiers, Algeria

Abstract

In this paper, we use the properties of the classical umbral calculus to give some congruences related to the Bell numbers and Bell polynomials. We also present a new congruence involving Appell polynomials with integer coefficients.

Keywords

  • Bell polynomials
  • Appell polynomials
  • Congruences
  • Umbral calculus

2020 Mathematics Subject Classification

  • 11B83
  • 11B73
  • 11A07
  • 05A40

References

  1. Appell, P. (1880). Sur une classe de polynômes. Annales Scientifiques de l’École Normale Supérieure, 9, 119–144.
  2. Broder, A. Z. (1984). The r-Stirling numbers. Discrete Mathematics, 49(3), 241–259.
  3. Benyattou, A., & Mihoubi, M. (2018). Curious congruences related to the Bell polynomials. Quaestiones Mathematicae, 41(3), 437–448.
  4. Benyattou, A., & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra. Notes on Number Theory and Discrete Mathematics, 25(2), 136–144.
  5. Gertsch, A., & Robert, A. M. (1996). Some congruences concerning the Bell numbers. Bulletin of the Belgian Mathematical Society – Simon Stevin, 3, 467–475.
  6. Gessel, I. M. (2003). Applications of the classical umbral calculus. Algebra Universalis, 49(4), 397–434.
  7. Gould, H. W. (1972). Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Morgantown, W. V.
  8. Mihoubi, M., & Taharbouchet, S. (2020). Some identities involving Appell polynomials. Quaestiones Mathematicae, 43(2), 203–212.
  9. Mező, I. (2011). The r-Bell numbers. Journal of Integer Sequences, 14, Article 11.1.1.
  10. Nyul, G., & Rácz, G. (2015). The r-Lah numbers. Discrete Mathematics, 338(10), 1660–1666.
  11. Rota, G. C. (1964). The number of partitions of a set. American Mathematical Monthly, 71(5), 498–504.
  12. Roman, S., & Rota, G. C. (1978). The umbral calculus. Advances in Mathematics, 27(2), 95–188.
  13. Rota, G. C., & Taylor, B. D. (1994). The classical umbral calculus. SIAM Journal on Mathematical Analysis, 25(2), 694–711.
  14. Sun, Y., Wu, X., & Zhuang, J. (2013). Congruences on the Bell polynomials and the derangement polynomials. Journal of Number Theory, 133(5), 1564–1571.
  15. Sun, Z-W., & Zagier, D. (2011). On a curious property of Bell numbers. Bulletin of the Australian Mathematical Society, 84(1), 153–158.
  16. Sun, Y., & Wu, X. (2011). The largest singletons of set partitions. European Journal of Combinatorics, 32(3), 369–382.
  17. Touchard, J. (1933). Propriétés arithmétiques de certains nombres récurrents. Annales de la Société scientifique de Bruxelles, A53, 21–31.

Manuscript history

  • Received: 16 February 2022
  • Revised: 2 November 2022
  • Accepted: 5 November 2022
  • Online First: 7 November 2022

Related papers

Cite this paper

Benyattou, A. (2022). Congruences via umbral calculus. Notes on Number Theory and Discrete Mathematics, 28(4), 719-729, DOI: 10.7546/nntdm.2022.28.4.719-729.

Comments are closed.