Sagar Mandal
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 4, Pages 899–907
DOI: 10.7546/nntdm.2025.31.4.899-907
Full paper (PDF, 210 Kb)
Details
Authors and affiliations
Sagar Mandal
![]()
Department of Mathematics, Indian Institute of Technology Ropar
Punjab, India
Abstract
Inspired by Lehmer’s and Deaconescu’s conjectures, as well as various analogue problems concerning Euler’s totient function
, Schemmel’s totient function
, Jordan totient function
, and the unitary totient function
, we investigate analogous divisibility problems involving the functions
,
, and
. Further, we establish some interesting properties of the sequences
and
, in particular, we prove that each of these sequences contains infinitely many arithmetic progressions of length
.
Keywords
- Euler’s totient function
- Unitary totient function
- Schemmel’s totient function
- Jordan totient function
- Sum of positive divisors function
2020 Mathematics Subject Classification
- 11A25
References
- Burcsi, P., Czirbusz, S., & Farkas, G. (2011). Computational investigation of Lehmer’s totient problem. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 35, 43–49.
- Burek, D., & Żmija, B. (2019). A new upper bound for numbers with the Lehmer property and its application to repunit numbers. International Journal of Number Theory, 15(7), 1463–1468.
- Cohen, G. L., & Hagis, P. (1980). On the number of prime factors of
if
. Nieuw Archief voor Wiskunde, III Series, 28(2), 177–185. - Cohen, G. L., & Segal, S. L. (1989). A note concerning those
for which
divides
. The Fibonacci Quarterly, 27(3), 285–286. - Deaconescu, M. (2000). Adding units mod
. Elemente der Mathematik, 55(3), 123–127. - Guy, R. K. (1994). Unsolved Problems in Number Theory (2nd ed.). Springer-Verlag.
- Hagis, P. (1988). On the equation
Nieuw Archief voor Wiskunde, IV Series, 6, 255–261. - Hasanalizade, E. (2022). On a conjecture of Deaconescu. Integers, 22, Article ID #A99.
- Hernandez, S. H., & Luca, F. (2008). A note on Deaconescu’s result concerning Lehmer’s problem. Integers, 8(1), Article ID #A12.
- Lehmer, D. H. (1932). On Euler’s totient function. Bulletin of the American Mathematical Society, 38, 745–751.
- Luca, F., & Křížek, M. (2001). On the solutions of the congruence
Proceedings of the American Mathematical Society, 129, 2191–2196. - Luca, F., & Pomerance, C. (2011). On composite integers
for which
Boletín de la Sociedad Matemática Mexicana, 17(1), 13–21. - Mandal, S. (2025). A note on Deaconescu’s conjecture. Annals of West University of Timisoara – Mathematics and Computer Science, 61(1), 55–60.
- Mandal, S. (2025). A note on newly introduced arithmetic functions φ+ and σ+. Notes on Number Theory and Discrete Mathematics, 31(2), 404–409.
- Pomerance, C. (1977). On composite
for which
, II. Pacific Journal of
Mathematics, 69(2), 177–186. - Sándor, J., & Crstici, B. (2004). Handbook of Number Theory II, Springer.
- Sándor, J., & Atanassov, K. (2024). Some new arithmetic functions. Notes on Number Theory and Discrete Mathematics, 30(4), 851–856.
- Subbarao, M. V., & Siva Rama Prasad, V. (1985). Some analogues of a Lehmer problem on the totient function. Rocky Mountain Journal of Mathematics, 15(2), 609–620.
Manuscript history
- Received: 4 August 2025
- Revised: 5 December 2025
- Accepted: 8 December 2025
- Online First: 9 December 2025
Copyright information
Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Mandal, S. (2025). Divisibility and sequence properties of σ+ and φ+. Notes on Number Theory and Discrete Mathematics, 31(4), 899-907, DOI: 10.7546/nntdm.2025.31.4.899-907.
