Manasi K. Sahukar and Hussain Basha
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 390–403
DOI: 10.7546/nntdm.2025.31.2.390-403
Full paper (PDF, 251 Kb)
Details
Authors and affiliations
Manasi K. Sahukar
![]()
Department of Mathematics, S. K. C. G. Autonomous College
Paralakhemundi, 761200 Odisha, India
Hussain Basha
![]()
Department of Mathematics, Government First Grade College
Zalaki-586204, Karnataka, India
Abstract
In this paper, we define the notion of almost repdigit as a positive integer whose digits are all equal except for at most one digit, and we search all terms of the balancing and Lucas-balancing sequences which are almost repdigits. In particular, the only almost repdigits in balancing sequence are 0, 1, 6, and the only almost repdigits in Lucas-balancing sequence are 1, 3, 17, 99, 577, 3363.
Keywords
- Diophantine equations
- Linear form of logarithms
- Almost repdigits
- Balancing numbers
- Lucas-balancing numbers
2020 Mathematics Subject Classification
- 11A25
- 11B39
References
- Altassan, A., & Alan, M. (2023). Almost repdigit k-Fibonacci numbers with an application of k-generalized Fibonacci sequences. Mathematics, 11(2), Article ID 455.
- Baker, A., & Davenport, H. (1969). The equations
and
. The Quarterly Journal of Mathematics, 20, 129–137. - Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Bravo, J. J., Gómez, C.A.G., & Luca, F. (2016). Powers of two as sums of two k-Fibonacci numbers. Miskolc Mathematical Notes, 17(1), 85–100.
- Bugeaud, Y., Mignotte, M., & Siksek, S. (2006). Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics, 163(3), 969–1018.
- Dujella, A., & Petho, A. (1998). A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics, Oxford Series, 49, 291–306.
- Faye, B., & Luca, F. (2015). Pell and Pell–Lucas numbers with only one distinct digit. Annales Mathematicae et Informaticae, 45, 55–60.
- Gica, A., & Panaitopol, L. (2003). On Obláth’s problem. Journal of Integer Sequences, 6(3), Article ID 03.3.5.
- Irmak, N., & Togbé, A. (2018). On repdigits as product of consecutive Lucas numbers. Notes on Number Theory and Discrete Mathematics, 24(3), 95–102.
- Kihel, O., & Luca, F. (2005). Perfect powers with all equal digits but one. Journal of Integer Sequences, 8(5), Article ID 05.5.7.
- Luca, F. (2000). Fibonacci and Lucas numbers with only one distinct digit. Portugaliae Mathematica, 57(2), 243–254.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear forms in logarithms of algebraic numbers, II. Izvestiya Rossiĭskoĭ Akademii Nauk. Seriya Matematicheskaya, 64, 125–180. [English translation: Izvestiya: Mathematics, 64, 1217–1269.]
- Panda, G. K. (2009). Some fascinating properties of balancing numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, Braunschweig, Germany, July 5–9, 2004. Congressus Numerantium, 194, 185–189.
- Rayaguru, S. G., & Bravo, J. J. (2023). Balancing and Lucas-balancing numbers which are concatenation of three repdigits. Boletín de la Sociedad Matemática Mexicana, 29, Article ID 57.
- Rayaguru, S. G., & Panda, G. K. (2018). Repdigits as product of consecutive balancing and Lucas-balancing numbers. The Fibonacci Quarterly, 56(4), 319–324.
- Rayaguru, S. G., & Panda, G. K. (2020). Balancing numbers which are concatenation of two repdigits. Boletín de la Sociedad Matemática Mexicana, 26(3), 911–919.
- Rayaguru, S. G., & Panda, G. K. (2021). Balancing and Lucas-balancing numbers
expressible as sums of two repdigits. Integers, 21, Article ID #A7. - Sahukar, M. K., & Panda, G. K. (2019). Repdigits in Euler functions of Pell numbers. The Fibonacci Quarterly, 57(2), 134-–138.
- Sahukar, M. K., & Panda, G. K. (2020). Repdigits in Euler functions of associated Pell numbers. Proceedings – Mathematical Sciences, 130(1), Article ID 25.
- de Weger, B. M. M. (1989). Algorithms for Diophantine Equations. CWI Tracts, Vol. 65, Centrum voor Wiskunde en Informatica, Amsterdam.
Manuscript history
- Received: 29 November 2024
- Revised: 9 June 2025
- Accepted: 12 June 2025
- Online First: 14 June 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Irmak, N., & Togbé, A. (2018). On repdigits as product of consecutive Lucas numbers. Notes on Number Theory and Discrete Mathematics, 24(3), 95–102.
Cite this paper
Sahukar, M. K., & Basha, H. (2025). Almost repdigits in balancing and Lucas-balancing sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 390-403, DOI: 10.7546/nntdm.2025.31.2.390-403.
