Nurettin Irmak and Alain Togbé
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 24, 2018, Number 3, Pages 42–49
DOI: 10.7546/nntdm.2018.24.3.95102
Full paper (PDF, 193 Kb)
Details
Authors and affiliations
Nurettin Irmak
Mathematics Department, Art and Science Faculty
Nigde Ömer Halisdemir University, Nigde, Turkey
Alain Togbé
Department of Mathematics, Purdue University Northwest
1401 S. U. S. 421., Westville, IN 46391, United States
Abstract
Let (𝐿^{𝑛})^{𝑛≥0} be the Lucas sequence. D. Marques and A. Togbé [7] showed that if 𝐹_{𝑛}…𝐹_{𝑛+𝑘−1} is a repdigit with at least two digits, then (𝑘, 𝑛) = (1, 10), where (𝐹_{𝑛})_{≥0} is the Fibonacci sequence. In this paper, we solve the equation 𝐿_{𝑛}…𝐿_{𝑛+𝑘−1} = 𝑎 (︂10^{𝑚} − 1) / 9, where 1 ≤ 𝑎 ≤ 9, 𝑛, 𝑘 ≥ 2 and 𝑚 are positive integers.
Keywords
 Lucas numbers
 Repdigits
2010 Mathematics Subject Classification
 11A63
 11B39
 11B50
References
 Bugeaud, Y., Mignotte, M., & Siksek, S. (2006) Classical and modular approaches to exponential Diophantine equations, I. Fibonacci and Lucas powers, Ann. of Math., 163, 969–1018.
 Dujella, A., A. Pethö (1998) A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49 (195), 291–306.
 Koshy, T. (2003) Fibonacci and Lucas Numbers with Applications, Wiley.
 Lengyel, T. (1995) The order of the Fibonacci and Lucas numbers, Fibonacci Quart., 33(3), 234–239.
 Luca, F. (2000) Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 50, 243–254.
 Luca, F., T. N. Shorey (2005) Diophantine equations with product of consecutive terms in Lucas sequences, J. Number Theory, 114, 298–311.
 Marques, D., & Togbé, A. (2012) On repdigits as product of consecutive Fibonacci numbers. Rend. Istit. Mat. Univ. Trieste, 44, 393–397.
 Matveev, E. M. (2000) An explicit lower bound for a homogeneous linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64(6), 125–180; translation in Izv. Math. 64 (200), 6, 1217–1269.
Related papers

Irmak, N., & Togbé, A. (2022). Factorials as repdigits in base b. Notes on Number Theory and Discrete Mathematics, 28(1), 2125.
Cite this paper
Irmak, N., & Togbé, A. (2018). On repdigits as product of consecutive Lucas numbers. Notes on Number Theory and Discrete Mathematics, 24(3), 95102, DOI: 10.7546/nntdm.2018.24.3.95102.