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Abstract: Let (𝐿𝑛)𝑛≥0 be the Lucas sequence. D. Marques and A. Togbé [7] showed that if
𝐹𝑛 . . . 𝐹𝑛+𝑘−1 is a repdigit with at least two digits, then (𝑘, 𝑛) = (1, 10), where (𝐹𝑛)≥0 is the
Fibonacci sequence. In this paper, we solve the equation

𝐿𝑛 . . . 𝐿𝑛+𝑘−1 = 𝑎

(︂
10𝑚 − 1

9

)︂
,

where 1 ≤ 𝑎 ≤ 9, 𝑛, 𝑘 ≥ 2 and 𝑚 are positive integers.
Keywords: Lucas numbers, Repdigits.
2010 Mathematics Subject Classification: 11A63, 11B39, 11B50.

1 Introduction

Let (𝐹𝑛)𝑛≥0 be the Fibonacci sequence given by the relation 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, for 𝑛 ≥ 2 and
with 𝐹0 = 0, 𝐹1 = 1. Its companion sequence is known as Lucas sequence (𝐿𝑛)𝑛≥0 that satisfies
the same relation with Fibonacci sequence together with the initial conditions 𝐿0 = 2 and 𝐿1 = 1.

These numbers have very amazing properties (for see details, we refer the book of Koshy [3]).
Finding special properties in these sequences is a very interesting problem. The most famous

one is given by Bugeaud et al. [1] as that the only perfect powers in Fibonacci sequence are
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0, 1, 8 and 144. Luca and Shorey [6] proved that product of consecutive Fibonacci numbers is not
a perfect power of exponent larger than one of an integer except the trivial case 𝐹1𝐹2 = 1.

If a positive integer has only one distinct digit in its decimal expansion, then we call it
“repdigit”. Obviously, such a number has the form 𝑎 (10𝑚 − 1) /9, for some 𝑚 ≥ 1 and
1 ≤ 𝑎 ≤ 9. It is natural to ask, which numbers are repdigits in Fibonacci and Lucas sequences?
This question was answered by Luca [5] in 2000 by showing that 55 is the largest repdigit Fi-
bonacci number and 11 is the largest repdigit Lucas number. Recently, Marques and Togbé [7]
proved the following result.

Theorem 1. The only solution of the Diophantine equation

𝐹𝑛 · · ·𝐹𝑛+(𝑘−1) = 𝑎

(︂
10𝑚 − 1

9

)︂
, (1)

in positive integers 𝑛, 𝑘,𝑚, 𝑎, with 1 ≤ 𝑎 ≤ 9 and 𝑚 > 1 is (𝑛, 𝑘,𝑚, 𝑎) = (10, 1, 2, 5).

For the proof of the above theorem, they used mathematical induction, Fibonacci recurrence
pattern, congruence properties, etc. But, the main point of their proof is the identity 5|𝐹5𝑛 (𝑛 ≥ 0).

The aim of this paper is to study a similar problem but in the case of Lucas numbers. Our
main result is as follows.

Theorem 2. The quadruple (𝑛, 𝑘,𝑚, 𝑎) = (4, 2, 2, 7) is the only solution of the Diophantine
equation

𝐿𝑛 . . . 𝐿𝑛+𝑘−1 = 𝑎

(︂
10𝑚 − 1

9

)︂
, (2)

for some 𝑚 ≥ 1, 𝑘 ≥ 2 and 1 ≤ 𝑎 ≤ 9 being integers.

In order to solve the equation, we use the definition of 𝑝-adic order of an integer, linear forms
in logarithms à la Baker, and congruence properties.

2 Auxiliary results

The 𝑝-adic order of 𝑟 is the exponent of the highest power of a prime 𝑝 which divides 𝑟. We
denote it by 𝜈𝑝 (𝑟). Now, we recall a result of Lengyel [4] on the 2-adic order of a Lucas number.

Lemma 1. For 𝑛 ≥ 0 integer, then

𝜈2 (𝐿𝑛) =

⎧⎪⎨⎪⎩
0, 𝑛 ≡ 1, 2 (mod 3)

2, 𝑛 ≡ 3 (mod 6)

1, 𝑛 ≡ 0 (mod 6).

The Binet formula for a Lucas number is

𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛,

where 𝛼 (> 1) and 𝛽 (< 1) are the roots of the characteristic equation 𝑥2 − 𝑥− 1 = 0. Moreover,
we have

𝛼𝑛−1 < 𝐿𝑛 < 𝛼𝑛+1, for 𝑛 ≥ 0. (3)
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Since we use Baker method for our proof, we give two lemmata due to Matveev [8] (and
Theorem 9.4 of [1]), Dujella and Pethö [2]. It is well-known that the logarithmic height of an
algebraic number 𝜂 is defined as

ℎ (𝜂) =
1

𝑑

(︃
log 𝑎0 +

𝑑∑︁
𝑖=1

log
(︀
max

{︀⃒⃒
𝜂(𝑖), 1

⃒⃒}︀)︀)︃
,

where 𝑑 is the degree of 𝜂 over Q and
(︀
𝜂(𝑖)
)︀
1≤𝑖≤𝑑

are the conjugates of 𝜂 over Q, and 𝑎0 is the
leading coefficient of the irreducible polynomial of 𝜂.

Lemma 2. Let K be a number field of degree 𝐷 over Q, 𝛾1, 𝛾2, . . . , 𝛾𝑡 be positive real numbers
of K, and 𝑏1, 𝑏2, . . . , 𝑏𝑡 nonzero rational integers. Put

𝐵 ≥ max {|𝑏1| , |𝑏2| , . . . , |𝑏𝑡|} ,

and
Λ := 𝛾𝑏1

1 · · · 𝛾𝑏𝑡
𝑡 − 1.

Let 𝐴1, . . . , 𝐴𝑡 be positive real numbers such that

𝐴𝑖 ≥ max {𝐷ℎ (𝛾𝑖) , |log 𝛾𝑖| , 0.16} , 𝑖 = 1, . . . , 𝑡.

Then, assuming that Λ ̸= 0, we have

|Λ| > exp
(︀
−1.4× 30𝑡+3 × 𝑡4.5 ×𝐷2 × (1 + log𝐷) (1 + log𝐵)𝐴1 . . . 𝐴𝑡) .

Lemma 3. Suppose that 𝑀 is a positive integer. Let 𝑝/𝑞 be a convergent of the continued fraction
expansion of the irrational number 𝛾 such that 𝑞 > 6𝑀 and 𝜖 =‖ 𝜇𝑞 ‖ −𝑀 ‖ 𝛾𝑞 ‖, where 𝜇 is
a real number and ‖ · ‖ denotes the distance from the nearest integer. If 𝜖 > 0, then there is no
solution to the inequality

0 < 𝑚𝛾 − 𝑛+ 𝜇 < 𝐴𝐵−𝑚

in positive integers 𝑚 and 𝑛 with
log(𝐴𝑞/𝜖)

log𝐵
≤ 𝑚 < 𝑀.

3 Proof of Theorem 2

3.1 The congruence method

If 𝑚 = 2, then we get the solution

𝐿4𝐿5 = 7 · 11 = 7

(︂
102 − 1

9

)︂
.

Assume that 𝑘 ≥ 9 and 𝑚 ≥ 4. Then, we have

𝜈2 (𝐿𝑛 . . . 𝐿𝑛+𝑘−1) = 𝜈2 (𝐿𝑛) + · · ·+ 𝜈2 (𝐿𝑛+𝑘−1) ≥ 4.

Since 𝜈2
(︀
𝑎
(︀
10𝑚−1

9

)︀)︀
≤ 3, for 1 ≤ 𝑎 ≤ 9 an integer, then it yields an absurdity. So it follows that

𝑘 ≤ 8.
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If we focus on the 2-adic order of Lucas numbers and 𝑎
(︀
10𝑚−1

9

)︀
in equation (2), then we have

the several possible equations. We give the following tables containing the results obtained after
taking the left and the right sides of equation (2) modulo 𝑡. As an example, it is obvious to see that
𝐿6𝑛𝐿6𝑛+1 ≡ 2 (mod 5). Namely, {𝐿𝑘}𝑘≥0 has period 4 modulo 5 with the period being 2, 1, 3, 4.
Since 6𝑛 is even, it follows that either 6𝑛 is a multiple of 4, so then the two consecutive Lucas
numbers are at the beginning of the period, namely the residues 2, 1 with 2 · 1 ≡ 2 (mod 5), or
6𝑛 ≡ 2 (mod 4), in which case the Lucas numbers are the last two, namely the residues 3, 4 with
3 · 4 ≡ 2 (mod 5).

It is obvious that 610𝑚−1
9

≡ 1 (mod 5). Therefore, we arrive at a contradiction. Since the
other cases can be proved by induction, we omit them. The sign † means a contradiction.

∙ Suppose that 𝑛 ≡ 0 (mod 6).

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 2 16 2 or 10 14 †
2 6 5 2 1 †
4 8 10 4 8 †
3 2 5 1 or 4 2 †
3 6 8 6 2 †
5 8 25 7 or 18 13 †
6 8 25 18, 3 or 23 13 †

∙ Suppose that 𝑛 ≡ 1 (mod 6). Then, we have:

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 1 8 3 7 †
2 3 8 3 5 †
2 5 10 3 5 †
2 7 10 3 7 †
2 9 10 3 9 †
3 4 10 2 or 8 4 †
4 4 39 24, 33, 33, 24, 6, 27, 6 0, 4, 5, 15, 37, 23 †

5 4 37

19, 34, 28, 12, 11, 24, 8, 17, 3,

17, 8, 24, 11, 12, 28, 34, 19, 36,

1, 18, 3, 9, 25, 26, 13, 29, 20, 34,

20, 29, 13, 26, 25, 9, 3, 18, 1, 36

0, 4, 7 †

6 8 30 12 18, 8, 28 †
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∙ If 𝑛 ≡ 2 (mod 6), then

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 4 10 2 4 †

3 4 39
21, 33, 36, 33, 21, 6

33, 18, 6, 3, 6, 18, 33, 6
15, 37, 23, 0, 4, 5 †

4 4 39 6, 24, 33, 33, 24, 6, 27 0, 4, 5, 15, 37, 23 †

5 8 39
21, 27, 36, 21, 36, 27, 21

18, 12, 3, 18, 3, 12, 18
0, 8, 10, 30, 35, 7 †

6 8 39 21, 15, 12, 6, 6, 12, 15 0, 8, 10, 30, 35, 7 †

∙ Now, assume that 𝑛 ≡ 3 (mod 6). Then, we get following table.

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 4 5 3 4 †
3 4 5 2 4 †
4 8 10 4 8 †
5 8 10 4 or 6 8 †
6 8 10 2 8 †

∙ Assume that 𝑛 ≡ 4 (mod 6). Then, we obtain:

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 1 5 2 1 †
2 3 20 17 13 †
2 5 5 2 0 †
2 7 8 5 1 †
2 9 9 5 or 6 0 †
3 2 8 2 6 †
3 6 − − − possible
4 2 20 14 2 †
4 6 20 14 6 †
5 2 25 18, 7 22 †
5 6 25 18, 7 16 †
6 8 25 18, 23, 3 13 †
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∙ Finally, if 𝑛 ≡ 5 (mod 6), then

𝑘 𝑎 𝑡 𝐿𝑛 . . . 𝐿𝑛+𝑘−1 (mod 𝑡) 𝑎
(︀
10𝑚−1

9

)︀
(mod 𝑡) Result

2 2 20 18 2 †
2 6 24 6, 22 18 †

3 2 25
13, 12, 8, 2, 8,

12, 13, 17, 23, 17
22 †

3 6 16 14 10 †
4 2 15 9 12, 2 or 7 †
4 6 15 9 6 †
5 8 25 1, 24 13 †
6 8 25 7, 2, 22 13 †

From all the tables, we see that the equation 𝐿𝑛𝐿𝑛+1𝐿𝑛+2 =
6
9
(10𝑚 − 1) is possible if 𝑛 ≡ 4

(mod 6). We solve this equation in the next subsection by Baker’s method.

3.2 The equation 𝐿𝑛𝐿𝑛+1𝐿𝑛+2 =
6
9 (10

𝑚 − 1)

In this subsection, we prove that the equation

𝐿𝑛𝐿𝑛+1𝐿𝑛+2 =
6

9
(10𝑚 − 1) =

2

3
(10𝑚 − 1) (4)

has no solution with positive integers 𝑛 and 𝑚 ≥ 3. Combining the Binet formula for Lucas
numbers with the fact 𝐿𝑛𝐿𝑛+1𝐿𝑛+2 = 𝐿3𝑛+3 + (−1)𝑛 2𝐿𝑛+1, we get

𝛼3𝑛+3 − 2

3
10𝑚 =

−2

3
− 𝛽3𝑛+3 − (−1)𝑛

(︀
2𝛼𝑛+1 + 2𝛽𝑛+1

)︀
.

Thus, we obtain⃒⃒⃒⃒
1− 2

3
10𝑚𝛼−(3𝑛+3)

⃒⃒⃒⃒
≤ 2

3𝛼3𝑛+3
+

|𝛽|3𝑛+3

𝛼3𝑛+3
+

2

𝛼2𝑛+2
+

2 |𝛽|𝑛+1

𝛼3𝑛+3

<
4

𝛼3𝑛+3
+

2

𝛼2𝑛+2
<

6

𝛼2𝑛+2
. (5)

Let
Λ :=

2

3
𝛼−(3𝑛+3)10𝑚 − 1.

In order to apply Lemma 2, we take

𝛾1 :=
2

3
, 𝛾2 := 𝛼, 𝛾3 := 10, 𝑏1 := 1, 𝑏2 := 3𝑛+ 3, 𝑏3 := 𝑚.

For this choice, we have 𝐷 = 2, 𝑡 = 3, 𝐵 = 3𝑛 + 3, 𝐴1 := 0.16, 𝐴2 := 0.5, and 𝐴3 := 2.31.

As 𝛼, 10, and 2/3 are multiplicatively independent, we have Λ ̸= 0. We combine Lemma 2 and
the inequality (5) to obtain

exp (𝐾 (1 + log (3𝑛+ 3))) < |Λ| < 6

𝛼2𝑛+2
, (6)
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where 𝐾 := −1.4 · 306 · 34.5 · 4 (1 + log 2) · 0.16 · 0.5 · 2.31. Inequality (6) yields that

𝑛 < 5.87 · 1012.

By the estimates for Lucas numbers given by (3) and equation (4), we have 10𝑚 < 𝛼3𝑛+6 and
then ⃒⃒⃒⃒

1− 2

3
10𝑚𝛼−(3𝑛+3)

⃒⃒⃒⃒
<

6

𝛼2𝑛+2
<

73

(102/3)
𝑚 .

Let 𝑧 := 𝑚 log 10− (3𝑛+ 3) log𝛼 + log 2
3
. Thus,

|1− 𝑒𝑧| < 73

(102/3)
𝑚

holds. It is obvious that 𝑧 ̸= 0. If 𝑧 > 0, then

0 < 𝑧 ≤ |1− 𝑒𝑧| < 73

(102/3)
𝑚 .

Otherwise (𝑧 < 0), we get

0 < |𝑧| ≤ 𝑒|𝑧| − 1 = 𝑒|𝑧| |1− 𝑒𝑧| < 146

(102/3)
𝑚 ,

where we use the fact |1− 𝑒𝑧| < 1
2
. In any case, we obtain that

0 <

⃒⃒⃒⃒
𝑚 log 10− (3𝑛+ 3) log𝛼 + log

2

3

⃒⃒⃒⃒
<

146

(102/3)
𝑚 <

146

(4.6)𝑚
.

Dividing by 3 log𝛼, we get
|𝑚𝛾 − 𝑛+ 𝜇| < 102 · (4.6)−𝑚 .

with 𝛾 := log 10
3 log𝛼

and 𝜇 :=
log( 2

3)
3 log𝛼

. Let 𝑞𝑡 be the denominator of the 𝑡-th convergent of the continued
fraction of 𝛾. Taking 𝑀 := 5.87 · 1012, we have

𝑞32 = 109143857145934 > 6𝑀,

and then 𝜖 := ‖𝜇𝑞32‖ − 𝑀 ‖𝛾𝑞32‖ > 0. The conditions of Lemma 3 are fulfilled for 𝐴 := 102

and 𝐵 := 4.6. Then, there are no solutions for the interval[︃⌊︃
log
(︀
102·𝑞32

∈

)︀
log𝐵

⌋︃
+ 1,𝑀

)︃
=
[︀
26, 5.87 · 1012

)︀
.

Therefore, it remains to check equation (2) for 3 ≤ 𝑚 ≤ 25. For this, we use a program written
in Mathematica and see that there are no solutions of the equation

𝐿𝑛𝐿𝑛+1𝐿𝑛+2 =
6

9
(10𝑚 − 1) .

This completes the proof of Theorem 2.
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