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Abstract: Let (Ln)n20 be the Lucas sequence. D. Marques and A. Togbé [7] showed that if
Fy ... Fuix-1 is a repdigit with at least two digits, then (k,n) = (1,10), where (F,). is the
Fibonacci sequence. In this paper, we solve the equation

10m -1
Ln...Ln+k_1:a< 9 ),

where 1 < a < 9,n, k£ > 2 and m are positive integers.
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1 Introduction

Let (Fn)n>0 be the Fibonacci sequence given by the relation F,, = F,,_| + F},_o, for n > 2 and
with Fj :_O, Fy = 1. Its companion sequence is known as Lucas sequence (L,,), -, that satisfies
the same relation with Fibonacci sequence together with the initial conditions L = 2and Ly =1
These numbers have very amazing properties (for see details, we refer the book of Koshy [3]).
Finding special properties in these sequences is a very interesting problem. The most famous
one is given by Bugeaud et al. [1] as that the only perfect powers in Fibonacci sequence are
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0,1, 8 and 144. Luca and Shorey [6] proved that product of consecutive Fibonacci numbers is not
a perfect power of exponent larger than one of an integer except the trivial case F} F5 = 1.

If a positive integer has only one distinct digit in its decimal expansion, then we call it
“repdigit”. Obviously, such a number has the form a (10™ — 1) /9, for some m > 1 and
1 < a < 9. It is natural to ask, which numbers are repdigits in Fibonacci and Lucas sequences?
This question was answered by Luca [5] in 2000 by showing that 55 is the largest repdigit Fi-
bonacci number and 11 is the largest repdigit Lucas number. Recently, Marques and Togbé [7]
proved the following result.

Theorem 1. The only solution of the Diophantine equation

10m™ —1
Fn'--Fn+(k1)=a( 9 ), (D

in positive integers n, k, m,a, with 1 < a < 9andm > 1is (n,k,m,a) = (10,1, 2,5).

For the proof of the above theorem, they used mathematical induction, Fibonacci recurrence
pattern, congruence properties, etc. But, the main point of their proof is the identity 5| F5,, (n > 0).

The aim of this paper is to study a similar problem but in the case of Lucas numbers. Our
main result is as follows.

Theorem 2. The quadruple (n,k,m,a) = (4,2,2,7) is the only solution of the Diophantine

10m —1
Ln...Ln+k_1:a< 5 ) (2)

equation

forsomem > 1, k> 2and1 < a <9 being integers.

In order to solve the equation, we use the definition of p-adic order of an integer, linear forms
in logarithms a la Baker, and congruence properties.

2 Auxiliary results

The p-adic order of r is the exponent of the highest power of a prime p which divides r. We
denote it by v, (). Now, we recall a result of Lengyel [4] on the 2-adic order of a Lucas number.

Lemma 1. For n > 0 integer, then

0, n=1,2 (mod 3)
v (Ly,)=4¢ 2, n=3 (mod6)
I, n=0 (mod 6).

The Binet formula for a Lucas number is
L,=a"+p",

where o (> 1) and 3 (< 1) are the roots of the characteristic equation z* — z — 1 = (. Moreover,

we have
a" ' < L, <o, forn > 0. 3)
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Since we use Baker method for our proof, we give two lemmata due to Matveev [8] (and
Theorem 9.4 of [1]), Dujella and Petho [2]. It is well-known that the logarithmic height of an
algebraic number 7 is defined as

h(n)= é <loga0 + Zlog (max{‘n(i)7 1‘})) ,

where d is the degree of 7 over Q and (n¥) are the conjugates of 7 over Q, and ay is the

1<i<d
leading coefficient of the irreducible polynomial of 7.

Lemma 2. Let K be a number field of degree D over Q, 1,7, ..., V: be positive real numbers
of K, and by, bs, . . ., by nonzero rational integers. Put

B > max {|b],|bo|,. .., |0},
and

A::%’l---yft—l.

Let Ay, ..., A, be positive real numbers such that
A; > max {Dh (vi), |logv],0.16}, i=1,...,t
Then, assuming that A # 0, we have
|A| > exp (—1.4 x 30" x t*° x D* x (1+1log D) (1+1logB) A; ... A4,).

Lemma 3. Suppose that M is a positive integer. Let p/q be a convergent of the continued fraction

expansion of the irrational number ~y such that ¢ > 6M and ¢ =|| uq || =M || vq ||, where p is

a real number and || - || denotes the distance from the nearest integer. If € > 0, then there is no
solution to the inequality
O<my—n+pu<AB™

in positive integers m and n with

10g(Aq/€)
o m< M

3 Proof of Theorem 2

3.1 The congruence method

If m = 2, then we get the solution
102 -1
L4L5:7-11:7( 5 )

Assume that £ > 9 and m > 4. Then, we have

Vo(Ln .. Lyir—1) = v2 (Ly) + - + 1o (Lygp—1) > 4.

Since v (a (%)) < 3, for 1 < a <9 an integer, then it yields an absurdity. So it follows that
k<8.
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If we focus on the 2-adic order of Lucas numbers and a (%) in equation (2), then we have
the several possible equations. We give the following tables containing the results obtained after
taking the left and the right sides of equation (2) modulo ¢. As an example, it is obvious to see that
LeynLen+1 = 2 (mod 5). Namely, { Ly } x>0 has period 4 modulo 5 with the period being 2, 1, 3, 4.
Since 6n is even, it follows that either 67 is a multiple of 4, so then the two consecutive Lucas
numbers are at the beginning of the period, namely the residues 2, 1 with2-1 =2 (mod 5), or
6n = 2 (mod 4), in which case the Lucas numbers are the last two, namely the residues 3, 4 with
3-4=2 (mod 5).

It is obvious that GW?T’I = 1 (mod 5). Therefore, we arrive at a contradiction. Since the
other cases can be proved by induction, we omit them. The sign { means a contradiction.

e Suppose that n = 0 (mod 6).

’ k ‘ a ‘ t ’ Ly...Lyik—1 (mod t) ‘ a(1%=1)  (mod t) ‘ Result ‘
21216 2or10 14 T
2 6] 5 2 1 :
48110 4 8 t
3125 lor4 2 1
3618 6 :
5825 Torl8 13 :
68|25 18,3 or 23 13 :

e Suppose that n = 1 (mod 6). Then, we have:

’ k ‘ a ‘ t ‘ Ly...Lypyg—1 (mod t) ’ a(%%51)  (mod ¢t) ‘ Result ‘
218 3 7 t
R 3 5 t
215110 3 ) T
27110 3 7 t
219710 3 9 t
31410 2or8 4 1
44139 924,33, 33, 24,6, 27,6 0,4,5,15,37, 23 t

19,34,28,12, 11,24, 8, 17, 3,

17,8,24,11,12,28,34, 1

5 4 37 7787 ) b ) 873 ) 97367 0’ 477 _l_
1,18,3,9,25,26, 13,29, 20, 34,

20,29, 13,26, 25,9, 3,18, 1, 36

68|30 12 18,8,28 T
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e If n =2 (mod 6), then

‘ k ‘ a ‘ t ’ Ly...Lyik—1 (modt) ‘ a (%) (mod ¢) ‘ Result ‘

214710 2 4 t
21 21

304139 ,33,36,33,21,6 15,37,23,0,4,5 +
33,18,6,3,6,18,33,6

414039 6,24,33,33,24,6,27 0,4,5,15,37,23 +
21,27, 36,21, 36,27, 21

518139 ,27,36,21, 36,27, 0,8,10,30,35,7 +
18,12,3,18,3,12, 18

618[39] 21,15,12,6,6,12,15 0,8,10,30,35,7 +

e Now, assume that » = 3 (mod 6). Then, we get following table.

’ k ‘ a ‘ t ’ Ly...Lyik—1 (modt) ‘ a (%) (mod t) ‘ Result ‘
2o[4] 5 3 4 t
3045 2 4 :
48110 4 8 t
518110 4 or 6 8 ]
6810 2 8 :

e Assume that n = 4 (mod 6). Then, we obtain:

‘ k ‘ a ‘ t ’ L,...Lyik—1 (modt) ‘ a(%) (mod t) ‘ Result ‘

21| 5 2 1 ]
213120 17 13 T
2155 0 T
21718 1 T
21919 5or6 0 T
312 8 2 6 T
316 — — — possible
41220 14 2 T
416 |20 14 6 T
51225 18,7 22 T
516 |25 18,7 16 T
68|25 18,23,3 13 ]
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e Finally, if n = 5 (mod 6), then

’ k ‘ a ‘ t ’ Ly...Lyik—1 (mod t) ‘ a(1%%5=)  (mod ¢) ‘ Result ‘

20 18 2 +

6| 24 6,22 18 +

2l 9] o 13,12,8,2, 8, - ;

12,13,17,23,17

30616 14 10 +
41215 9 12,2 0r 7 +
11615 9 6 +
518125 1,24 13 t
6|8]25 7,2,22 13 t

From all the tables, we see that the equation L, L, 1L, 2 = g (10™ — 1) is possible if n = 4
(mod 6). We solve this equation in the next subsection by Baker’s method.

3.2 Theequation L, L, 1L, > =5 (10™ — 1)

In this subsection, we prove that the equation

6 2
LuLnsrLnga = 5 (10" = 1) = 5 (10" ~ 1) @)

has no solution with positive integers n and m > 3. Combining the Binet formula for Lucas
numbers with the fact L, L, 1 Lpi2 = L3niz + (—1)" 2L, 1, we get

o’ — glom = %2 — A — (=1)" (2" 4281
Thus, we obtain
e
< 1 + 2 < 0 (5)

q3nt3 2nt2 a2nt2’

Let
A= 20443“3)10”1 -1
3

In order to apply Lemma 2, we take

2
MIT g 2T @ Y 10, by :=1, by :=3n+ 3, b3 :=m.

For this choice, we have D = 2, t =3, B =3n+ 3, A; := 0.16, Ay := 0.5, and A3 := 2.31.
As «, 10, and 2/3 are multiplicatively independent, we have A # 0. We combine Lemma 2 and
the inequality (5) to obtain

6
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where K := —1.4-305-3%5 .4 (1 +log2)-0.16 - 0.5 - 2.31. Inequality (6) yields that
n < 5.87-10".

By the estimates for Lucas numbers given by (3) and equation (4), we have 10™ < o*"*% and

then
6 73

a2nt2 < (102/3)7” ’

1— ;loma—(3n+3) <

Let z := mlog 10 — (3n + 3) log a + log % Thus,

73

|1—€|<W

holds. It is obvious that z # 0. If z > 0, then

73

O<Z§‘1—€|<W.

Otherwise (z < 0), we get

146

lz2l 1 = el2l]1 — ¢ =
0<|z]<e 1=¢e"]1 e|<(102/3)m,

where we use the fact |1 — e*| < % In any case, we obtain that

2
0 < |mlogl0— (3n+3) loga—i—logg

146 146

S oA S @e™

Dividing by 3 log «r, we get
|my —n+ p| <102 (4.6)"".

V)
N—

. log( 2 . .
with y == 20810 apd 4 .= &. Let ¢; be the denominator of the ¢-th convergent of the continued
3loga 3log

fraction of ~y. Taking M := 5.87 - 10'2, we have
q32 = 109143857145934 > 6 M,

and then € := ||ugaa|| — M ||vgs2|| > 0. The conditions of Lemma 3 are fulfilled for A := 102
and B := 4.6. Then, there are no solutions for the interval

1 102-q32
HMJ i 1,M) = [26,5.87-10'2).

log B

Therefore, it remains to check equation (2) for 3 < m < 25. For this, we use a program written
in Mathematica and see that there are no solutions of the equation

LnLn+1Ln+2 = (].Om - ].) .

NelNep)

This completes the proof of Theorem 2. [
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