
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2025, Volume 31, Number 2, 390–403
DOI: 10.7546/nntdm.2025.31.2.390-403

Almost repdigits in balancing and Lucas-balancing
sequences

Manasi K. Sahukar 1 and Hussain Basha 2

1 Department of Mathematics, S. K. C. G. Autonomous College
Paralakhemundi, 761200 Odisha, India

e-mail: manasi.sahukar@gmail.com
2 Department of Mathematics, Government First Grade College

Zalaki-586204, Karnataka, India
e-mail: hussain555basha@gmail.com

Received: 29 November 2024 Revised: 9 June 2025
Accepted: 12 June 2025 Online First: 14 June 2025

Abstract: In this paper, we define the notion of almost repdigit as a positive integer whose
digits are all equal except for at most one digit, and we search all terms of the balancing and
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1 Introduction

The balancing number B corresponding the balancer R, is a natural number that satisfies the
Diophantine equation
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1 + 2 + · · ·+ (B − 1) = (B + 1) + · · ·+ (B +R),

for some natural number R and the balancing numbers are represented as {Bn}n≥0. When B is
a balancing number, 8B2 + 1 is a perfect square, and the Lucas-balancing number is the positive
square root of it [3, 13] and these numbers are represented as {Cn}n≥0. The balancing numbers
satisfy the binary recurrenceB0 = 0,B1 = 1, andBn+1 = 6Bn−Bn−1, While the Lucas-balancing
numbers, satisfies the same recurrence relation with different initial terms C0 = 1, C1 = 3. Their
Binet equations are given by

Bn =
αn − βn

4
√
2

, Cn =
αn + βn

2
, n = 0, 1, . . . ,

where α = 3 +
√
8 and β = 3−

√
8.

A repdigit is a positive integer with a decimal expansion that contains only one distinct digit,
which have the form d(10m − 1)/9 for some m ≥ 1 and 1 ≤ d ≤ 9. As a generalization,
for every given positive integer g ≥ 2, the number N of the form a(g

m−1
g−1

), where m ≥ 1

and a ∈ {1, 2, . . . , g − 1} is termed the base g repdigit. Numerous studies have been carried
out on the search of repdigits, sum of repdigits, concatenation of repdigits in different binary
sequences, sum, product, and arithmetic functions of binary sequence terms. The search of
repdigits in Fibonacci, Lucas, Pell and Pell–Lucas sequences, in the product of consecutive
Fibonacci numbers and Lucas numbers has been explored in [7, 9, 11]. Further, Rayaguru and
Panda [14,16,17] investigated the existence of repdigits, sum of two repdigits and cocatenation of
two repdigits in balancing and Lucas-balancing sequence [15]. As an extension of these works,
Sahukar and Panda investigated the repdigits in the Euler functions of Pell and associated Pell
numbers [18, 19]. Considering the numbers similar to the repdigits, the Fibonacci sequence
consist of three consecutive numbers F12 = 144, F13 = 233, F14 = 377, where all digits are
equal except only one digit, which is called as almost repdigits. These are the numbers of the
form

a

(
10m − 1

9

)
+ (b− a)10l, 0 ≤ l < m, 0 ≤ a, b ≤ 9. (1)

The square and perfect power in almost repdigits were examined in [8,10], without being attributed
a specific name. All almost repdigits are also searched in k-Fibonacci numbers and k-Lucas
numbers for all k ≥ 2 [1].

The objective of this paper is to extend this study by exploring the balancing and Lucas-
balancing numbers expressible as almost repdigits. In particular, we prove the following results.

Theorem 1.1. The only balancing numbers which are almost repdigits areB0=0, B1=1, B2=6.

Theorem 1.2. The only Lucas-balancing numbers Cn which are in the form of almost repdigits
are C0 = 1, C1 = 3, C2 = 17, C3 = 99, C4 = 577 and C5 = 3363.

The proofs of the above theorems come from two effective methods for Diophantine equations.
One of them is linear forms in logarithms of algebraic numbers due to Matveev [12], whereas the
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other one is a version of the reduction algorithm due to Dujella and Pethő [6], which was in
fact originally introduced by Baker and Davenport in [2]. In the application of these methods, we
frequently need some calculations and computations, for which we use the software Mathematica.
To eliminate the trivial cases, the proof of the above theorems are carried out for numbers with at
least three digits, since all integers having one or two digits are trivially almost repdigits. Thus,
we also consider a ≥ 3 and n > 5.

2 Preliminaries

Diophantine equations involving repdigits and variant binary recurrence sequences have solved by
using different methods such as Baker’s theory which is useful to reduce lower bounds concerning
linear forms in logarithms of algebraic numbers. The prominent tools for the proof of our
main results are the theory of lower bounds for nonzero linear forms in logarithms of algebraic
numbers. An extended version of Matveev’s theorem [12] have stated in ( [5], Theorem 9.4). Let
L be an algebraic number field of degree dL. Let η1, η2, . . . , ηl ∈ L not 0 or 1 and d1, d2, . . . , dl
be nonzero integers. Let

D = max{|d1|, · · · , |dl|} and Γ =
l∏

i=1

ηdii − 1.

Let A1, A2, . . . , Al be positive integers such that

Aj ≥ h
′
(ηj) = max{dLh(ηj), | log nj|, 0.16}, j = 1, . . . , l,

where η is an algebraic number having the minimal polynomial over Z, with degree k

f(X) = a0X
k + a1X

k−1 + · · ·+ ak = a0(X − η(1))(X − η(2)) · · · (X − η(k))

over the integer a0 > 0 and the ai’s are relatively prime integers. The logarithmic Weil height of
η is given by

h(n) =
1

k

(
log a0 +

k∑
j=1

max{0, log |η(j)|}

)

with the following properties

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η), s ∈ Z.

If η is a rational number of the form r/s, where r and s > 0 are relatively prime integers, then
h(η) = h(r/s) = logmax{|r|, s}.

We now present a theorem derived from [12, Corollary 2.3] by E. M. Matveev, resulting in a
significant upper bound for the subscript n in (2) (also see [5, Theorem 9.4]).
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Theorem 2.1. If Γ ̸= 0 and L ⊆ R, then

log|Γ| > −1.4 · 30l+3l4.5d2L(1 + logdL)(1 + logD)A1, . . . , Al.

Another main tool for the proof of our main results is a variant of the Baker and Davenport
reduction method due to de Weger [20].

Let ϑ1, ϑ2, β ∈ R and let x1, x2 ∈ Z be unknowns. Let

Γ = β + x1ϑ1 + x2ϑ2. (2)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive. Assume that

|Γ| < c · exp(−δ · Y ), (3)

Y ≤ X ≤ X0. (4)

When β = 0 in Equation (2), we get

Γ = x1ϑ1 + x2ϑ2.

Let ϑ = −ϑ1/ϑ2, where ϑ2 ̸= 0. We assume that x1 and x2 are coprime. Let the continued
fraction expansion of ϑ be given by [a0, a1, a2, . . .], and let the k-th convergent of ϑ be pk/qk for
k = 0, 1, 2, . . . . We may assume without loss of generality that |ϑ1| < |ϑ2| and that x1 > 0. We
have the following results.

Lemma 2.2. (See Lemma 3.2 in [20]) Let

A = max
0≤k≤Y0

ak+1.

If Equation (3) and Equation (4) hold for x1, x2 and β = 0, then

Y <
1

δ
log

(
c(A+ 2)X0

|ϑ2|

)
.

When β ̸= 0 in Equation (2), let ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2, where ϑ2 ̸= 0. Then, we have

Γ

ϑ2

= ψ − x1ϑ+ x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x, let ||x|| = min{|x− n|, n ∈ Z},
the distance from x to the nearest integer.

Lemma 2.3. (See Lemma 3.3 in [20]) Suppose that

||qψ|| > 2X0

q
.

Then, the solutions of Equation (3) and Equation (4) satisfy

Y <
1

δ
log

(
q2c

|ϑ2|X0

)
.

Now, the following lemma is provided which is useful for reducing some upper bounds on the
variables.
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Lemma 2.4. (Lemma 1 in [4]). Let M be a positive integer, and let p/q be a convergent of
the continued fraction of the irrational number κ such that q > 6M. Let A,B, µ be some real
numbers with A > 0 and B > 1. Let ϵ := ||µq|| −M ||κq||, where || · || denote the distance to the
nearest integer, that is, ||x|| = min{|x− n| : n ∈ Z} for any real number x. If ϵ > 0, then there
is no solution to the inequality

0 < |mκ− n+ µ| < AB−j,

in positive integers m, n and j with

m ≤M and j ≥ log(Aq/ϵ)

log B
.

3 Main results

3.1 Proof of Theorem 1.1

Assume that

Bn = a

(
10m − 1

9

)
+ (b− a)10l, 0 ≤ l < m, 0 ≤ a, b ≤ 9. (5)

A quick computer search reveals that there is no solution in the interval n ∈ [4, 55]. So from now
on, we assume that n > 55.

Lemma 3.1. All solutions of Equation (5) satisfy

mlog10− 1 < nlogα < mlog10 + 1.77.

Proof. Since the balancing numbers satisfy αn−1 < Bn < αn for n > 1 and from Equation (5)
we have 10m−1 < Bn < 2 · 10m, it follows that

αn−1 < Bn < 10m and 10m−1 < Bn < αn.

Application of the logarithm both sides of the above inequality, gives

(n− 1)logα < logBn < m log 10 and (m− 1)log10 < logBn < nlogα,

yielding
nlogα < mlog10 + 1.77 and mlog10− 1 < nlogα.

Implementing the Binet formulae in Equation (5), we get

αn − βn

4
√
2

= a

(
10m − 1

9

)
+ (b− a)10l, (6)

i.e.,
9αn − 9βn = a(α− β)10m + (α− β){9(b− a)10l − a}. (7)

Equation (7) is studied in two different steps.
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Step 1: Rewriting Equation (7) as

|9αn − a(α− β)10m| = |9βn − (α− β){9(a− b)10l + a}|
≤ 9α−n + 4

√
2(8 · 9 · 10l + 9)

≤ 9α−n + 4
√
2(72.9 · 10l)

≤ 412.4 · 10l,

which yields ∣∣ 9

4
√
2
αn10−m − 1

∣∣ ≤ 412.4 · 10l

4
√
2a10m

=
72.9

10m−l
. (8)

Let
Γ =

9

4
√
2
αn10−m − 1,

which gives

| log Γ| ≤ log 72.9− (m− l) log 10. (9)

If Γ = 0, then
√
2 = 9

4·10mα
n and hence, α2n = 2( 9

4·10m )−2 ∈ Q, which is not possible
for any n > 0 and consequently, Γ ̸= 0.

Consider η1 = 9
4
√
2
, η2 = α, η3 = 10 with exponents b1 = 1, b2 = n, b3 = −m where

η1, η2, η3 ∈ Q(
√
2) and d1, d2, d3 ∈ Z. The degree of L := Q(

√
2) is dL = 2. Use of

the properties of the logarithmic Weil height will provide

h(η1) = h(
9

4
√
2a

) = h(
9

a
) + h(4

√
2)

≤ h(9) + h(4
√
2)

≤ log 9 +
1

2
log 32 ≤ 3.94,

and h(η2) = h(α) = logα
2

≤ 1.77, h(η3) ≤ log 10 ≤ 2.31 and thus,

A1 := 7.88, A2 = 3.54, A3 = 4.62

Considering Theorem 2.1 and Equation (9), we have

log Γ ≥ −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 · · ·Al

log Γ ≥ −1.25 · 1014(1 + log n)

log 72.9− (m− l) log 10 ≥ −1.25 · 1014(1 + log n)

(m− l) log 10 ≤ 1.25 · 1014(1 + log n) + log 72.9.

Step 2: Rewriting Equation (6) differently as

αn − βn

4
√
2

=
1

9
{a10m + 9(a− b)10l − a}∣∣∣∣∣αn − 4

√
2(a10m + 9(a− b)10l)

9

∣∣∣∣∣ = |βn − 4
√
2a| < |α−n + 4

√
2| < 6.
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Dividing both sides of the above inequality by αn/4
√
2, we get∣∣∣∣∣4

√
2(a10m−l + 9(a− b))

9
α−n10l − 1

∣∣∣∣∣ < 12

αn
.

Let

Γ′ :=
4
√
2(a10m−l + 9(a− b))

9
α−n10l − 1. (10)

If Γ′ = 0, then

αn = 4
√
2

(
a10m

9
+

9(b− a)10l

9

)
,

and consequently, the conjugate of αn in Q(
√
2) will provide

40
√
210m

9
≤
∣∣4√2

(
a10m

9
+

9(b− a)10l

9

)∣∣ = |βn| < 1,

which is not possible for any natural number m. Therefore, Γ′ ̸= 0.

Let η1 = 4
√
2(a10m−l−9(a−b))

9
, η2 = α, η3 = 10, d1 = 1, d2 = −n, d3 = l, where

η1, η2, η3 ∈ Q(
√
2) and d1, d2, d3 ∈ Z. The degree of L := Q(

√
2) is dL = 2. Hence,

the logarithmic Weil height will be

h(η1) = h(
4
√
2

9
) + h(a10m−l − 9(a− b)) ≤ 1.26 · 1014(1 + log n)

and
h(η2) =

1

2
logα, h(η3) = log10,

which implies that

A1 = 2.52 · (1 + log n), A2 = 3.54, A3 = 4.62.

Since 1 ≤ m ≤ l and l < n + 1, we take D = n + 1. Now, In view of Theorem 2.1 and
Equation (10),

log(Γ′) > −3.997 · 1027(1 + log n)2

and hence

n logα ≤ 3.997 · 1027(1 + log n)2 + log 12,

or
n ≤ 2.14 · 1031

and by Lemma 3.1, m ≤ 1.64 · 1031.

This is mentioned in the following lemma.

Lemma 3.2. All solutions of Equation (5) satisfy

m ≤ l < 1.64 · 1031 and n < 2.14 · 1031.
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To lower the above bounds, let

Λ = log

(
9

4
√
2a
αn10−m

)
= log

(
9

4
√
2

)
+ n logα−m log 10,

and this implies that

Γ = |eΛ − 1| < 72.9

10m−l

The inequality |ez − 1| < y for real values of z and y, implies that z < 2y and thus,

|Λ| < 145.8

10m−l

or ∣∣∣∣log( 9

4
√
2a

)
+ n logα−m log 10

∣∣∣∣ < 145.8

10m−l
,

or ∣∣∣∣∣∣m
(
log 10

logα

)
− n−

log
(

9
4
√
2a

)
logα

∣∣∣∣∣∣ < 82.7

10m−l
<

82.7

10m
.

In accordance to Lemma 2.4 by considering

κ =
log 10

logα
, µ =

log
(

9
4
√
2a

)
logα

, A = 82.7 and B = 10.

Since ∥qµ∥ −M∥qκ∥ < 0.06 := ϵ, and considering the continued fraction expansion of κ, the
denominator q which satisfies q > 1.9 · 1033 > 6M where M is defined as m < 1.64 · 1031 :=M,

is q64 = 193515224029707700321265026524859, we get

m ≤ log(Aq/ϵ)

logB
≤ 35.50

and hence, m ≤ 35.

Considering

Λ′ = log

(
4
√
2(a10m−l − 9(a− b))

9
α−n10l

)
or

Λ′ = −n logα + l log 10 + log

(
4
√
2(a10m−l − 9(a− b))

9

)
.

Inequality (10) implies that

Γ′ = |eΛ′ − 1| ≤ 12

αn
.

and thus, |Λ′| ≤ 24
αn . This leads to∣∣∣∣∣l log 10− n logα + log

(
4
√
2(a10m−l − 9(a− b))

9

)∣∣∣∣∣ ≤ 24

αn
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or ∣∣∣∣∣∣l log 10logα
− n+

log
(

4
√
2(a10m−l−9(a−b))

9

)
logα

∣∣∣∣∣∣ ≤ 24

log(α)αn
<

14

αn

By applying Lemma 2.4, consider

κ =
log 10

logα
, µ =

log
(

4
√
2(a10m−l−9(a−b))

9

)
logα

, A = 14, B = α,

M∥qκ∥ has the upper bound 0.000009 as l < M := 1.64 · 1031 and the denominator of the 71-st
convergent of the continued fraction expansion of κ is

qκ = 136769793956776398013006685452785403.

The smallest value of ||Q|| over all the values of a, b, m > 0.000122. Thus, ϵ = 0.0001 <

||q|| −M ||qκ|| is considered. Therefore,

n ≤ log(Aq/ϵ)

logB
< 52.62,

which contradicts the fact that n > 55. This completes the proof of Theorem 1.1. □

3.2 Proof of Theorem 1.2

Assume that

Cn = a

(
10m − 1

9

)
+ (b− a)10l, 0 ≤ l < m, 0 ≤ a, b ≤ 9. (11)

A quick computer search reveals that the only solutions existing in the interval n ∈ [4, 55] are
C1, C2, C3, C4. So from now on, the bound for the value of n is assumed as n > 55.

Lemma 3.3. All solutions of Equation (11) satisfy

mlog10 + 0.693 < nlogα < mlog10− 3.37.

Proof. Since the Lucas-balancing numbers satisfy αn ≤ 2Cn ≤ αn+1, this gives

αn ≤ 2Cn ≤ 2 · 10m and 2 · 10m−1 ≤ 2Cn ≤ αn+1

or
n logα ≤ log 2 +m log 10 and log 2 + (m− 1) log 10 ≤ (n+ 1) logα

or

n logα ≤ 0.693 +m log 10 and m log 10− 3.37 ≤ n logα, (12)

which proves the lemma.
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By implementing the Binet’s formula of Lucas-balancing numbers, Equation (11) can be
written as

αn + βn

2
= a

(
10m − 1

9

)
+ (b− a)10l, (13)

which is studied in two different steps.

Step 1: Rewriting Equation (13) as

9

2
(αn + βn) = a10m + 9(b− a)10l − a

or
∣∣∣∣92αn − a10m

∣∣∣∣ = ∣∣∣∣9(b− a)10l − 9

2
βn − a

∣∣∣∣ = 81 · 10l

or
∣∣∣∣ 92a10−mαn − 1

∣∣∣∣ ≤ 81 · 10l

a10m
(14)

Let

Γ =

∣∣∣∣ 92a10−mαn − 1

∣∣∣∣ ,
which gives

| log Γ| ≤ log(81)− (m− l) log(10)10m−l. (15)

If Γ = 0, then
√
2 = qαn, where q ∈ Q and hence, α2n = 2q−2 ∈ Q, which is not

possible for any n > 0. Therefore, Γ ̸= 0. Let

η1 =
9

2a
, η2 = α, η3 = 10, d1 = 1, d2 = n, d3 = −m,

where η1, η2, η3 belong to the field Q(α) and d1, d2, d3 are integers. Since the degree of
the field dL = 2, and 10m−1 < Cn <

αn+1

2
, we consider D = n + 2. Application of the

properties of logarithmic Weil height will give

h(η1) = h

(
9

2a

)
≤ h(9) + h(2a) ≤ 2 log 9 + log 2,

which implies that 2h(η1) < 10.18 := A1 and 2h(η2) < 1.8 := A2, 2h(η3) < 4.7 := A3

after proceeding as in the previous section. In view of Theorem 2.1 and Equation (15),
we have

(m− l)log(10) < log(81) + 8.36 · 1013(1 + log(n+ 2))

or
m− l < 3.645 · 1013(1 + log(n+ 2)). (16)

Step 2: Rewriting Equation (11) as∣∣∣∣αn

2
−
(
a10m + 9(b− a)10l

9

)∣∣∣∣ = ∣∣∣∣−βn

2
− a

9

∣∣∣∣ < 2.5.
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Dividing αn/2, we get

1− 2α−n(a10m + 9(b− a)10l)

9
≤ 4.5

αn
<

1

αn−0.9
. (17)

Considering

Γ′ = 1− 2α−n10l(a10m−l + 9(b− a))

9
,

and applying natural logarithm to both sides in (17), it gives log Γ′ < (n− 0.9) logα. If
Γ′ = 0, then

αn =
2(a10m + 9(b− a)10l)

9

and the corresponding conjugate of αn in Q(
√
2) is

2 · 10m+1

9
≤
∣∣∣∣2(a10m + 9(b− a)10l)

9

∣∣∣∣ = |βn| < 1,

which is not possible for any value of m and hence Γ′ ̸= 0. Let

η1 =
2(a10m−l + 9(b− a))

9
, η2 = α, η3 = 10, d1 = 1, d2 = −n, d3 = l,

where η1, η2, η3 belong to the field Q(α) and d1, d2, d3 are integers with dL = 2 and
D = n+ 2. Using the properties of logarithmic Weil height,

h(η1) = h

(
2(a10m−l + 9(b− a))

9

)
≤ 10.17 + (m− l)2.31

2h(η1) ≤ 20.34 + 4.62(m− l) = A1,

and continuing the same process for η2 and η3, we getA2 = 1.8 andA3 = 4.7.Application
of Theorem 2.1 and Equation (17) will provide

log(Γ′) > −8.21 · 1012(20.34 + 4.62(3.64 · 1013(1 + log(n+ 2))))(1 + log(n+ 2)),

or

(n− 0.9) logα < 8.21 · 1012(20.34+4.62(3.64 · 1013(1+ log(n+2))))(1+ log(n+2)),

and hence n < 4.00009 · 1030 and therefore m ≤ l < 3.06986 · 1030.

To lower the bounds, Equation (11) is revised as

αn + βn

2
= Cn =

a10m

9
− a

9
+ (b− a)10l,

or
αn

2
− a10m

9
=
(
(b− a)10l − a

9

)
− βn

2
,

or
a10m

9

(
9

2a
10−mαn − 1

)
=
{
(b− a)10l − a

9

}
− βn

2
.
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Consider
Γ =

9

2a
10−mαn − 1,

with

log(Γ + 1) = Λ1 = log

(
9

2a
10−mαn

)
= log(9/2a) + n logα−m log 10.

Then, we obtain that a10m

9

∣∣ 9
2a
10−mαn − 1

∣∣ = |eΛ1 − 1|a10m
9

> 0 and hence

Λ1 < eΛ1 − 1 = Γ1 <
81

10m−l
.

This implies that

log

(
9

2a
10−mαn

)
= log(9/2a) + n logα−m log 10 <

81

10m−l

or log

(
9

2a
10−mαn

)
≤ exp{log 81− (log 10)(m− l)}

or Λ1 ≤ 101.91 exp(−2.3(m− l)),

which holds when Y = m− l = 4.01 · 1030. We also have

Λ1

log10
=

log(9/2a)

log 10
+ n

logα

log 10
−m.

Thus, considering c = 101.91, δ = 2.3, X0 = log(9/2a)
log 10

, ϑ = − logα
log10

, ϑ1 = logα, ϑ2 = log10,

β = log(9/2a), the value of q from the continued fractions p/q of ϑwhich satisfies the hypothesis
of Lemma 2.3 for 1 ≤ a ≤ 9 and q > X0, is q61 = 34316950683475914479089643709189, and
which concludes that m− l = Y < 34.047, i.e., Y ≤ 34. Now, 0 ≤ m− l ≤ 34 is considered.

Rewriting Equation (11) as

αn

2
− a10m + 9(b− a)10l

9
=

−βn

2
− a

9
,

or
αn

2

{
1− 2

a10m−l + 9(b− a)

9
10lα−n

}
= −

{
a

9
+

1

2αn

}
or

αn

2

{
1− eΛ

′
1

}
= −

{
a

9
+

1

2αn

}
,

if we assume that

Λ′
1 = log

(
a10m−l + 9(b− a)

9
10lα−n

)
.

Since a
9
+ 1

2αn >
1
9
+ 1

2αn > 0, then 1− eΛ′
1 > 0 and henceforth Λ′

1 > 0. In view of Equation (17),
we have

0 < Λ′
1 < eΛ

′
1 − 1 = |Γ′

1| <
1

αn−0.9
,

which implies that

log

(
2
a10m−l + 9(b− a)

9

)
+ l log 10− n logα <

1

αn−0.9
< α0.9exp(−1.76 · n).
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Consider

ψ′ =
log(2(a10m−l + 9(b− a))/9)

log10
, c = α0.9, δ = 1.76,

ϑ =
logα

log10
, ϑ1 = −logα, ϑ2 = log10, β = log(2(a10m−l + 9(b− a))/9).

Clearly, β ̸= 0 and evidently ψ′ ̸= 0 except when a = 5, b = 4, m− l = 1. Thus, for ψ′ ̸= 0, we
find that

q70 = 16582967789052824792691327834284630 > X0

satisfies the hypothesis of Lemma 2.3 and hence the application of Lemma 2.3 gives n < 43.68,

i.e., n ≤ 43, which is a contradiction to our assumption that n > 55. □

4 Conclusion

We have investigated the occurrence of almost repdigits, defined as positive integers whose
decimal representations consist of all identical digits except for at most one, within the balancing
sequence {Bn} and the Lucas-balancing sequence {Cn} through a combination of theoretical
arguments using Baker’s theory for linear forms in logarithms of algebraic numbers and the
Baker–Davenport reduction procedure and the exhaustive search using Mathematica and Maple
software. We established that the only terms of the balancing sequence that are almost repdigits
are 0, 1, 6 and the only terms of the Lucas-balancing sequence that are almost repdigits are
1, 3, 17, 99, 577, 3363. The interested readers can also extend the search for almost repdigits
of base 10 to almost repdigits of base g in different sequences and sums or products of those
sequences.
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